
14

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
u

g
u

st
/S

ep
te

m
b

er
 2

02
1

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

Application profiles (APs) have four major com-
ponents: (1) the application, (2) the entities that
the AP aims to describe, (3) the properties that

describe those entities, and (4) the values assigned to
those properties.

APs and their components have been variously
described, most notably in the literature of the Dub-
lin Core Metadata Initiative (DCMI).1 DCMI’s work on
APs is an outstanding body of work with which all
metadata professionals should be familiar. Many cre-
ators of APs, however, are not metadata profession-
als and will likely find this literature difficult to read.
Even many metadata professionals look at the Dublin
Core Abstract Model, for example, and wonder, “What
does this have to do with the actual work I do?” They
file it away and tell themselves, “I’ll look at this soon,”
then don’t.

Many people not metadata professionals find
themselves tasked with creating an AP. Metadata pro-
fessionals often advise these people in their efforts,
but pointing them toward the DCMI literature is not
always the best option. Metadata professionals need
to know the DCMI literature; others do not. To play an
advisory role, metadata professionals should be aware
of what is needed to create APs that function well in
the current information landscape and simplify the
process for those they advise.

The components of APs have not changed dramat-
ically in the past ten years; the way we write them and
the sorts of information they contain have changed.
The survey of components below explores familiar AP
instruments in the new context, made novel mostly
by the introduction of linked-data practices. For those
comfortable with AP issues, hopefully we will explore
some areas of interest; for others it may serve as a
launch into the new context, perhaps even help start
or continue updating aging models; however, this
exploration most frequently addresses the needs of
metadata professionals advising those working on

projects that need APs but lack the expertise, which
includes many librarians who are not metadata librar-
ians but are managing projects.

The Application

An AP is a description of descriptions. It describes to
data creators (and others) how to describe something.
The application is an application of these descrip-
tions described by the AP. The AP is a set of rules that
is completely unnecessary without an application.
Strictly speaking, the application is not a component
of an AP; rather, it is a determinant, the reason the
AP exists.

The use of the word application is confusing: there
is a distinction between an application for descrip-
tions and the software application that provides an
implementation. When we use the term the applica-
tion, we mean the former; when we mean the latter,
we use platform. Besides the word application, more
confusion results because many platforms come out of
the box with a predetermined application profile. To
further complicate matters, we often find that our APs
are written for specific platforms. It is not always easy
for writers of APs to distinguish between the applica-
tion and the platform.

All applications have unique needs. The AP is a
model that describes descriptions suitable for those
unique needs. If the chosen platform comes with an
application profile, our job is to understand our meta-
data needs, choose an appropriate subset of available
options, refine the subset, and, if possible, extend it. If
we have to create our own AP, we do that by choosing
subsets of metadata components that already exist;
they just exist outside the chosen platform. In either
case, the task of writing an AP is similar: we develop an
understanding of the application and design descrip-
tions that will optimize the application’s performance.

Components
Theodore Gerontakos

Chapter 3

http://alatechsource.org

15

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

u
g

u
st/Sep

tem
b

er 2021

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

There is a significant difference between APs
written for small projects with relatively low meta-
data expectations and those for large institution-wide
efforts, such as building an institutional repository,
where we should expect professional-level data mod-
eling. Small projects can be modeled with short-term
visions and informal methods, preferably with some
help from metadata professionals. Projects with high
expectations involve people across multiple profes-
sions, including metadata professionals, who would
be deeply involved in modeling the repository. In such
cases, professional modeling practices should be scru-
pulously followed.

Whatever the degree of professionalism needed,
the modeling process requires an understanding of
the application. Perhaps the fullest description of the
AP process is DCMI’s Singapore Framework, which
can be implemented with varying levels of profession-
alism.2 It is an extremely useful recommendation that
still has not been widely adopted. Following the Sin-
gapore Framework, a metadata application profile, or
description set profile, is achieved after careful analy-
sis of the application. The instruments for analyzing
the application include an evaluation of functional
requirements and the creation of a domain model.
No specific syntax is required; functional require-
ments can be a bulleted list of what’s required for the
application to function well; it can also be written as
structured data. Similarly, the domain model could
be diagrammed with a pen on an 8½ʺ × 11ʺ sheet
of paper; it can also be created using data-modeling
tools such as the Unified Modeling Language.3 In both
cases, for most projects, the documentation created at
this point may never be reviewed after the application
is implemented; what we’re creating is a full view of
the application that allows us to write our most useful
AP. The AP is the documentation we would expect to
be used—by data creators and data consumers—after
the application is deployed.

When creating models or making recommenda-
tions, we often overlook the fact that libraries have
worked strenuously to create a data model for library
data. In 1997, the Functional Requirements for Biblio-
graphic Records (FRBR) was formally released and
was updated in 2017 by the Library Reference Model
(LRM).4 These are high-level conceptual models that
provide a common model for application profiles. They
are particularly interested in end users and their use
of our applications. They offer a range of instruments
for describing the entities end users want to find, iden-
tify, select, obtain, or explore (those are the five “user
tasks” identified in the model). For most applications
and for most platforms, these models are too complex;
the most obvious problem is that most of our systems
do not differentiate the work, expression, manifesta-
tion, and item entities. Nevertheless, the models at
the very least can provide a solid foundation for AP

development. The LRM can serve as the starting point
for entities in our domain model, as well as for entity
attributes, the entities’ relationships with other enti-
ties, and their alignment with the user tasks.

LRM is a rich source of AP components and is
the basis of our current cataloging code, Resource
Description and Access (RDA). Both can be used as
the basis for creating an overall model, or at least
an understanding, of our application, no matter how
small the project. This can include evaluating func-
tional requirements, enumerating use cases, creat-
ing a domain model that diagrams the things we are
describing and how they are related, and consult-
ing already-existing models for the components that
will populate our APs. There is no better place to
start the AP process than an overall evaluation of the
application.

Entities

For many of us, including metadata professionals, the
word entities is relatively new as an everyday term
(despite its use over twenty years ago in FRBR). It
refers to the things our applications describe: people,
places—everything; concepts (such as subjects); infor-
mation resources; even knowledge.

We need to identify the things we are describ-
ing—that’s obvious. Libraries already describe things.
The most common things we describe are formats of
information resources: a monograph, a map, a sound
recording, and so on. We also describe agents, espe-
cially in our name authority file. We describe sub-
jects in our subject authority file. Libraries are well
acquainted with describing things, just not in a man-
ner fit for the 2020s. There have been several changes
in the way things are identified, isolated, described,
and brought into relation.

The major reason for these changes is the wide-
spread adoption of linked-data practices. We want to
assign Internationalized Resource Identifiers (IRIs) to
things. The IRIs act as surrogates for the thing itself.
We want to add descriptions of each thing, espe-
cially specifying the type of thing, and get the thing,
or thing-surrogate, and its descriptions in the web,
directly accessible as structured data and not medi-
ated, for example, by a splash page or represented by
a record in a library catalog.5 We want to give our
things a web identity or, more precisely, a Semantic
Web identity, allowing Semantic Web processors to
recognize the thing as a discrete entity.

Everything can be “entified” for the Semantic Web.
Not only is the information resource now an entity
complex (work/expression/manifestation/item), but it
is also related to many other entities. Obvious related
entities are the people-entities who produce an infor-
mation resource, such as the author, the publisher,

http://alatechsource.org

16

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
u

g
u

st
/S

ep
te

m
b

er
 2

02
1

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

and so on; less obvious entities include the title or
even the intended audience as things in themselves,
things that can be described, identified by an IRI, and
assigned a type. Once entified, the entities can then
be related using properties.

Application models, especially a domain model,
should reveal all types of entities for which our appli-
cation needs to assign IRIs. Will we be assigning IRIs
to works? Expressions? Agents? Keywords? Our APs
should describe how to create full descriptions of all
things to which we assign IRIs. For all things identified
as part of the application but for which we’re not assign-
ing IRIs, our APs should identify who has assigned IRIs
for those things and how to access those IRIs as well as
any additional information about the things.

Unfortunately, most of our current platforms are
not optimized for working with IRIs. Some do not
create, or “mint,” IRIs. Some do not recognize IRIs
as actionable links. Some cannot follow an IRI and
retrieve external data using that IRI. Then how many
systems recognize entities—such as work/expression/
manifestation—or allow for entity creation? Very
few! This leads to a range of social problems, from

administrators reluctant to invest in practices that
show little return on investment, to colleagues who
are openly hostile to linked data. So what are some
responses we can adopt now, while in this transition,
especially in regard to modeling entities?

One response is to do little or nothing; just
keep creating records. This is not necessarily a poor
approach. It represents a confidence that we can give
our entities web identities sometime in the future.
Our APs in this case look like APs we’ve been creat-
ing the past twenty years. There are very few entities.
For example, if we were creating records for data sets,
we would likely have only one entity: data sets (see
figure 3.1).

If we were describing multiple entities, we would
create something that looks more like figure 3.2.

When records are being created, the burden of
the AP becomes the description of properties and val-
ues, usually for a single entity; in addition, the values
will likely be text strings, and the creator of the AP
will want to carefully select sources of values. Use of
widely adopted standards, best practices, and high-
quality well-defined (in the AP) metadata will help
ensure future entification. That should not be a rev-
elation: high-quality metadata, using reliable sources
for values, has been recommended as a solution to
many problems for many decades.

Another response is to start inserting IRIs for enti-
ties into our records. This is what libraries are doing
that follow the PCC’s URIs in MARC Pilot.6 This can
be done in many environments. It does require more
work when entering metadata, and the return on
investment is not immediately apparent, so it can lead
to some resistance. This practice, like the do-nothing
approach, represents a confidence that entification
and Semantic Web identities will be relatively easily
accomplished in the future. The APs we write today
would, in this case, need to describe a method for
entering entity IRIs (see figure 3.3).

Because many of our systems are not well-suited at
present for managing entities, the problem of entities

Entity we are describing: Data sets

Properties we will use to describe the data sets:

 Creator (Agent)

 Instructions: Enter the name of the creator.

 Keyword

 Instructions: Enter a keyword.

 Description/Abstract

 Instructions: Enter a description of the data set.

 Identifier

 Instructions: Enter the identifier for the data set.

Figure 3.1
Imaginary AP for creating records describing data sets

Entity 1: Entity 2: Entity 3:
Data set Creator (Agent) Keyword

Properties include: Properties include: Properties include:

 Creator (Agent) Name Type

 Create entity Type of Agent Definition

 Keyword Etc. Label

 Create entity Etc.

 Description/Abstract

 Enter a description of the abstract.

 Identifier

 Enter the identifier for the data set.

 Etc.

Figure 3.2
Imaginary AP for creating data describing multiple entities associated with data sets

http://alatechsource.org

17

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

u
g

u
st/Sep

tem
b

er 2021

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

can be seen as a future problem. Another thing to
do now is to get involved in projects and initiatives
that incorporate the new models. This is an excellent
way to stay current with many practices, including
new ways of writing APs. The projects under “Linked
Data for Production,” featuring the linked-data plat-
form Sinopia, are a good example.7 PCC has had sev-
eral groups that are working in this arena.8 A related
approach is to maintain, especially in academic librar-
ies, a culture of exploration and research. We should
avail ourselves of current information about the bene-
fits and pain points of linked data. Another possibility,
something more concrete, is to form an understand-
ing of RDA and LRM as RDF models and start writ-
ing application profiles for RDA entities that can be
used in actual practice. This last suggestion can apply
to other ontologies beyond RDA; many organizations,
for example, are writing profiles using the BIBFRAME
ontology. This sort of current practice will hopefully
ease the difficulty of future entification projects.

Having moved from creating records to creating
data signals a significant change in what we do and

creates uncertainty in our APs about how to handle
entities. At present, we know we need to continue
identifying the things we plan to describe and, at
an early stage in the modeling process, establish a
general idea of how to describe them. In the new
context, the most pressing problem revolves around
IRIs and (1) identifying the entities for which we
create IRIs and (2) finding already-existing IRIs for
the other entities in our data; however, the impli-
cations are much broader. Exactly what metadata
is, is up for grabs. Our records describe information
resources (primarily manifestations), agents, and
subjects as discrete things, then include textual ref-
erences to lots of related things. Now when we create
data, the list of things we describe, or seek descrip-
tions for, has grown. Our direction is toward the cre-
ation of, or linking to, data describing many types
of entities and bringing them into relation. In other
words, we’re now creating first class data and not
only metadata records. Perhaps soon we will not call
ourselves metadata professionals but library data
professionals?

Entity we are describing: Data sets

Properties we will use to describe the data sets:

 Creator (Agent) 1

 Instructions: Enter the name of creator 1 as it appears in English in Wikidata.

 IRI for creator 1

 Instructions: Enter the Wikidata IRI for creator 1.

 Creator (Agent) 2

 Instructions: Enter the name of creator 2 as it appears in English in Wikidata.

 IRI for creator 2

 Instructions: Enter the Wikidata IRI for creator 2.

 Keyword 1

 Instructions: Enter a keyword as it appears in LCSH.

 Keyword 1 IRI

 Instructions: Enter the LCSH IRI for keyword 1.

 Keyword 2

 Instructions: Enter a keyword as it appears in LCSH.

 Keyword 2 IRI

 Instructions: Enter the LCSH IRI for keyword 2.

 Description/Abstract

 Instructions: Enter a description of the data set.

 Identifier

 Instructions: Enter the identifier for the data set.

Figure 3.3
Imaginary AP for creating records including IRIs for selected entities

http://alatechsource.org

18

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
u

g
u

st
/S

ep
te

m
b

er
 2

02
1

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

Properties

Identifying properties and the correct way to use
them is arguably the main purpose of an AP. Most APs
are a list of properties and the rules for using them.
Although few people look at APs, almost all our users
are acquainted with properties. They’ve been in use
for a really long time. In recent times past, we have
called them by other names: field name, data element,
attribute, predicate. Here we call them properties and
assume a general understanding.

We also favor a current trend in thinking of
properties as relationships; specifically, relation-
ships between entities or, more expansively, between
resources, because the value of the property may be
a literal and is not necessarily an entity. To further
complicate matters, LRM and RDA, libraries’ primary
data models, distinguish relationship-properties from
attribute-properties.9 Nevertheless we remain content
to consider the property a relationship between two
resources or, otherwise stated, two nodes.

In application profiles, we generally do not define
properties; that is done elsewhere, most notably in
ontologies or in element sets. Sometimes our AP will
require a property that apparently is not defined any-
where; in that case, preferred practice is to define the
property, publish the definition, then use it in the AP.
The AP assembles predefined properties from multiple
sources and clarifies their local use. There are not that
many areas that APs clarify for properties, usually ten
or so. Figure 3.4 shows five commonly seen properties
of properties that we see in almost every AP.

These properties of properties are not terribly
complex. What is difficult is deciding. Why is a par-
ticular property required? That is an organizational
problem. In the miniature AP in figure 3.4, the most
complex property is usage notes. It could be called by
another name, say input instructions; these are specific
rules on creating values, which can get quite complex.
Often, we find our initial rules do not accommodate
all cases, which can lead to a labyrinth of rules in our
APs. It can be difficult to find a balance between sim-
plicity and complexity.

Other complexities keep AP creation mostly an
endeavor of specialists. These include the need to
understand the original context of a property. A prop-
erty’s original context is usually a syndetic structure
that can get quite complex. For example, the original
context may describe a hierarchy of properties; when
we climb the hierarchy, we find our property is in a
chain of properties intended to describe humans only.
If we use that property to describe dogs, our APs will
contribute to the creation of lower quality data.

The complexity we will focus on here concerns
changes due to the widespread adoption of linked-data
practices. Despite those changes, we can view current
efforts as a continuation of what we have always done.

We still need metadata professionals (catalogers)
experienced in data creation—people who know good
sources of values, understand the complexities of par-
ticular fields like a date field, and so on. The same
people, however, were educated in the MARC format;
now we need similar expertise in RDF and in a hand-
ful of additional data models (RDA, BIBFRAME, etc.).

The most notable change is that several proper-
ties of properties have become commonplace. Some-
times these properties of properties will be explicit
in a source ontology, in which case we can just repeat
them in the AP for convenience; other times selected
properties of properties needed in the local application
will not appear in the source but should be included
in the AP. These properties of properties include the
following:

IRI

Properties now have IRIs. The IRI should be explicit in
the property’s original context. We repeat it in the AP
for convenience. If a property does not have an associ-
ated IRI, we should consider not using it.

Label

Human-friendly labels are better than IRIs for display
purposes, both within the application and in the AP
itself. A label may be recommended in the original
context, which is the preferred label, but a local appli-
cation can use a local label.

Sub-property-of

Sub-property-of would appear in the property’s origi-
nal context, where it is part of the syndetic structure.
We cannot change this information in the AP; we can
only repeat it. Care should be taken, when assembling
the AP, that the hierarchically inherited properties of
properties are respected.

Domain

Domain may or may not be asserted in the property’s
original context. If it is, we could simply repeat it in

Required: yes

Repeatable: no

Data Type: date

Definition: date associated with the item

Usage Notes: enter the date the item was created;
enter the year only

Figure 3.4
Common properties of properties

http://alatechsource.org

19

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

u
g

u
st/Sep

tem
b

er 2021

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

our AP. Alternatively, we could narrow the domain
to a subclass. We should not change the class so that
it will result in instances that are no longer members
of the class asserted in the original source. If the
domain is not asserted in the original source, we are
free to assert a domain in the AP, if required by the
application.10

Range

Range may or may not be asserted in the property’s
original context. As with domain, we could choose to
refine the range for our purposes, but not change it.
If the range is not asserted in the original source, we
are free to assert a range in the AP, if required by the
application.11

Node Type

The node type concerns a property’s value (whether it
is an IRI, a blank node, or a literal); we’ll describe it
in the section on values. However, information about
values in our APs is usually documented as part of the
description of a property. Node type is a new addition
to our APs. It may or may not be defined in the origi-
nal context of the property.

“Use Values From” or “Lookup”

“Use values from” or “lookup” will likely appear in an
AP only. It is more than an instruction to use headings
from a controlled source; it states we should search
a controlled vocabulary and, if a match is found for
our heading, retrieve additional data from the exter-
nal data set, especially the IRI. It also may include a
search across multiple data sets. It involves new prac-
tices for us, and we still don’t have a commonly used
method to represent these practices in our APs.

Another change is that common practices for creat-
ing APs, which may become standards, are emerging.
What distinguishes these new practices is the adop-
tion of entities: entities can be specifically described,
as well as the profile itself in some cases; neverthe-
less, the heart of these profiles remains the enumera-
tion of properties used to describe a given entity. The
Library of Congress led the way by creating the LC
BIBFRAME Profiles specification, which describes a
way to describe properties of properties, properties of
entities, and properties of the profile itself for unlim-
ited resources.12 This was adopted and refined by the
Linked Data for Production 2 project (LD4P2) for use
in creating APs in Sinopia. DCMI is also working on
new representations of APs, mostly through its DCMI
Application Profiles Working Group, which includes
some novel ways to describe and utilize properties of
properties but in a familiar spreadsheet environment.13

RDA requires a narrowing of its immense number of
properties for use in specific applications, and APs
will do this work; the RDA literature, notably the
RDA Toolkit, includes some sample APs, but it is still
unclear what the exact structure will be.14 Whatever
the case may be, a shared structure for RDA profiles
would be extremely useful, especially if the structure
is to be machine-actionable. Hopefully, PCC will con-
tribute to several of these efforts.

All these efforts at the various leading organi-
zations include the new RDF instruments as well as
instruments more traditional to our APs, such as a
property’s cardinality. Even if we still plan only to cre-
ate an AP that is a list of properties, we would do well
to create APs that take these changes into account.
AP creation was already a specialist endeavor that,
with a little help, could be handed off to a nonspecial-
ist. With the emergence of linked data, even that may
prove difficult.

Values

With few exceptions, properties have values. In APs,
the property-value pair is treated as a unit. Sometimes
this unit is called a field. We can distinguish, some-
times with difficulty, a property of a property from a
property of a value. For example, stating that a prop-
erty is repeatable is a property of the property; stat-
ing that the property uses only terms from the Art
and Architecture Thesaurus is a property of the value.
Nevertheless, if we are creating a tabular AP, with
each row describing a property, the properties of the
value are described in the same row as the properties
of the property.

Here we will endeavor to discuss the properties
of values. Until recently, these properties were almost
exclusively ways to create textual values (“strings”).
This is still an important part of the properties of
values, but with the introduction of linked-data prac-
tices, we have not only some new ways of describing
string values, but also some new value properties.

Node type is a new property of values mentioned
above. It is a springboard into many current issues, so
we will take a close look at node type, and then, due
to space constraints, take only a cursory look at some
other properties of values.

A node is derived from the domain of graph data
modeling; it comes to most library metadata profes-
sionals from RDF specifications, as RDF is a graph
data model. It’s simple: every thing or string is a node
joined to another node by a property, also called a
“relation,” or an “arc.” The RDF core structure is
often represented as the “triple”: (1) a subject node
that can be described by a property or “arc” called
(2) a predicate that has a value that is (3) the object
node. Many of us are familiar with the RDF triple

http://alatechsource.org

20

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
u

g
u

st
/S

ep
te

m
b

er
 2

02
1

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

subject-predicate-object, but most people we collabo-
rate with will not be familiar with graphs and RDF,
so talking about nodes may be a little confusing. The
triple-subject and the triple-object are nodes.

When we talk about the node type, we are describ-
ing the triple-object. Although not all data for which
we will want to write APs will be RDF data, it is useful
to keep in mind that, when we describe values, we’re
describing the triple-object, the value of the predi-
cate, the node toward which the arc in the graph is
directed.

There are not many node types: IRI, blank node,
literal, or some combination of the three. Distinguish-
ing the node type is useful. An IRI and a blank node
represent actual things, and things require additional
modeling and description. If the node is a literal, then
rules for entering the literal should be included in the
AP. However, a literal is not a thing. It can be turned
into a thing, like the RDA Nomen, but, as a string, it
cannot be further described.

Of course an IRI is itself a text string distinguished
because it is situated in larger data models. In the con-
text of the World Wide Web, it is an actionable string
that follows a particular syntax; the action is that it
“dereferences” (the IRI is an IRI “reference” that refer-
ences a resource on the web). This points to another
complexity that makes AP authoring a task of spe-
cialists. Our APs are miniature models that require a
handful of skills. These miniature models are part of
larger models, such as OWL ontologies. Those models
themselves are situated in a mega-model, RDF, which
provides a common model for Semantic Web data.
Then all of this is situated in a super-mega-model, the
World Wide Web. Understanding the full stack is more
than a full-time endeavor.

Stating that a value is an IRI has easily understood
implications for our instance data. Any values to be
entered by data creators for a given property should
be IRIs; any values seen in a data set by data consum-
ers can be recognized as IRIs. If sound linked-data
practices are followed, the IRI represents a thing, and
the data consumer should be able to dereference the
IRI and retrieve useful information about the thing.

There are nodes that are things but are not rep-
resented by IRIs and are not text nodes; we call these
blank nodes or bnodes. They can be described—state-
ments can be made about them—but they are not
given an identity on the web. As usual, it is more
complicated than that: usually local identifiers are
assigned (by any software used to parse the data), but
these do not persist beyond the local context.

Stating that a value is a blank node has easily
understood implications for our instance data. Any
values to be entered by data creators for a given
property should be a blank node and should not be
assigned an IRI. This is not straightforward for our
systems, however; blank nodes require systems that

permit a layered data structure. Blank nodes result in
data “nested” in other data. As writers of APs, we are
not always at liberty to state that a value should be a
blank node. It depends on our model developed for the
overall application within the confines of a specific
platform (our “implementation model”).

The string is the most complicated of the three
node types: it can be “structured,” “unstructured,” or
an identifier; it can be “typed”; its language can be
stated; it can be from a controlled vocabulary.

Structured and unstructured are terms taken from
RDA to describe literals, but the problem they rep-
resent is not just an RDA problem. An unstructured
literal is a blob of text entered however, without any
rules; it is uncontrolled. A structured literal, on the
other hand, follows data-entry rules; for example,
the elements of the textual information may need to
be entered in a particular order. The rule followed is
called a string encoding scheme in RDA; elsewhere,
most notably in DCMI, it is called a syntax encoding
scheme. Nowadays it is common to call it an SES, and
it is another property of values. In our AP, we would
somehow state that the value of a given property is
a literal and that the literal is either structured or
unstructured; if structured, we would specify the SES.

RDA also distinguishes literals that are identifi-
ers. Although these literals are similar to structured
values, they are distinguished not only because they
always have meaning in a particular external con-
text, but also because they are considered machine-
readable. Although not a common feature of APs out-
side RDA, identifier-literals will be essential to our
RDA profiles (when we get around to writing them).

Another node type is the typed literal. Usually, in
an AP, we state that the node type is a literal and that
the data type is a particular data type. Because of the
overuse of the word type, there is some confusion with
this property of values. In this case, we’re referring to
traditional data type, such as string, date, dateTime,
number, integer, and so on. When our instance data
follows RDF, our typed literals are most frequently
typed using the data type vocabulary in “W3C XML
Schema Definition Language Part 2.”15 Our entry in
the AP could look something like the fragment in fig-
ure 3.5.

When the node type is a literal, there is yet
another variation: the literal with its language identi-
fied. This presents a particular problem for the AP; we
would state that the node type is a literal, then state
somehow (it is not a fixture of APs at present) what
the language expectations are. It could be that a value
must be in a particular language; that is easy to rep-
resent in the AP, say in the input instructions. It could
be that the language of the value must be explicit in
our instance data; that is more difficult: where do we
enter that information? Our systems do not customar-
ily allow us to attach a language to a value (see figure

http://alatechsource.org

21

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

u
g

u
st/Sep

tem
b

er 2021

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

3.6).
This “meta” problem, which applies also to data

type, is a structural complexity inherited partially
from RDF. We want our systems to represent a value
of a property of a value. These seemingly simple needs
cause trouble at many levels. Where does the infor-
mation go in the AP? Where in the data entry form?
Should all values have a language requirement? Nev-
ertheless, we widely acknowledge the importance of
language identification and would do well to create
data points for language in our APs and demand sys-
tems that feature elegant representation of language.

The last type of literal we will consider here is a
literal value taken from a controlled vocabulary. The
new term for a controlled vocabulary is vocabulary
encoding scheme or VES. Ideally values from a VES
would have a node type IRI, not literal. The result in
most systems, unfortunately, would be a value that
displays to users as an IRI. Surely users would pre-
fer we enter the literal instead. In this case, the VES
would be identified in our AP, but its IRIs would likely
not appear in our instance data (see figure 3.7).

As seen above, other properties of values include
the SES and the VES; also mentioned above were
domain and range, as well as data type, which can

be seen as properties of values. Sometimes we see
“shape,” which comes to us from RDF validation lan-
guages (SHACL and ShEx being the most prominent).
Cardinality can be a property of values when a single
property allows multiple values separated by a delim-
iter. Other properties of values might include

• length of the value
• choice of a value from a set
• intersections or unions of value sets
• constant values
• maximum/minimum
• maxInclusive/minInclusive
• base IRIs for IRI values
• patterns that values should follow (like regular

expressions).

A lot of this may be present in the ontologies we
use as sources for our APs, or we may add it to the APs
ourselves. If it is present in the ontology, we would not
want to contradict anything in the ontology.

Notes
1. Dublin Core Metadata Initiative, https://dublincore

.org/.
2. Mikael Nilsson, Tom Baker, and Pete Johnston, “The

Singapore Framework for Dublin Core Application
Profiles,” Dublin Core Metadata Initiative, Janu-
ary 14, 2008, https://dublincore.org/specifications
/dublin-core/singapore-framework.

3. Unified Modeling Language, https://www.uml.org/.
4. IFLA Study Group on the Functional Requirements

for Bibliographic Records, Functional Requirements
for Bibliographic Records, IFLA Series on Bibliograph-
ic Control 19 (Munich, Germany: K. G. Saur Verlag,
1998, last updated February 2009) https://www
.if la.org/publications/functional-requirements-for
-bibliographic-records; Pat Riva, Patrick Le Bœuf, and
Maja Žumer, IFLA Library Reference Model: A Concep-
tual Model for Bibliographic Information (The Hague,
Netherlands: International Federation of Library As-
sociations and Institutions, August 2017, last updated
December 2017), https://www.ifla.org/publications
/node/11412.

5. Tom Heath and Christian Bizer, Linked Data: Evolv-
ing the Web into a Global Data Space (San Rafael, CA:

Property: http://purl.org/dc/terms/date

Label: Date

Node Type: rdfs:Literal

Datatype: xsd:gYear

Input instructions: Enter the date created; enter
the year only

Figure 3.5
Property/values for a date property plus property/values
for values, including data type

Application Profile:
 Property: Label
 Node Type: Literal
 Language: Greek, Ancient [this is a property of
the value and its value]

Display 1:
 Label: Ἀνδρομάχ

Display 2:
 Label: Ἀνδρομάχ [Language: Greek, Ancient]

Stored as:
Label=47;
47.labelString: Ἀνδρομάχ
47.labelLanguage: GreekAncient

Figure 3.6
Difficulties making language of a value explicit

Property label: Subject

Node Type: literal

SES: LCSH at http://id.loc.gov/authorities/subjects.
html

Input instructions: Enter the header exactly as it ap-
pears at the top of the page

Figure 3.7
AP fragment with instructions to use a string from the VES

http://alatechsource.org
https://dublincore.org/
https://dublincore.org/
https://dublincore.org/specifications/dublin-core/singapore-framework/
https://dublincore.org/specifications/dublin-core/singapore-framework/
https://www.uml.org/
https://www.ifla.org/publications/functional-requirements-for-bibliographic-records
https://www.ifla.org/publications/functional-requirements-for-bibliographic-records
https://www.ifla.org/publications/functional-requirements-for-bibliographic-records
https://www.ifla.org/publications/node/11412
https://www.ifla.org/publications/node/11412

22

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
u

g
u

st
/S

ep
te

m
b

er
 2

02
1

Metadata Application Profiles Theodore Gerontakos and Benjamin Riesenberg

Morgan & Claypool, 2011), chap. 3, http://linkeddata
book.com/editions/1.0.

6. “PCC URIs in MARC Pilot,” Program for Cooperative
Cataloging, Library of Congress, last updated October
24, 2019, https://www.loc.gov/aba/pcc/pilots/URIs
-in-MARC-Pilot.html.

7. Sinopia home page, Linked Data for Production 2
(LD4P2), https://sinopia.io.

8. “Task Groups,” Program for Cooperative Cataloging,
Library of Congress, https://www.loc.gov/aba/pcc
/taskgroup/task-groups.html.

9. Riva, Le Bœuf, and Žumer, IFLA Library Reference
Model, 17.

10. Dan Brickley and R. V. Guha, eds., “RDF Schema 1.1,”
section 3.2, W3C Recommendation, World Wide Web
Consortium, February 25, 2014, https://www.w3.org
/TR/2014/REC-rdf-schema-20140225/#ch_domain.

11. Dan Brickley and R. V. Guha, eds., “RDF Schema 1.1,”

section 3.1, W3C Recommendation, World Wide Web
Consortium, February 25, 2014, https://www.w3.org/
TR/2014/REC-rdf-schema-20140225/#ch_range.

12. “BIBFRAME Profiles: Introduction and Specification,”
draft for public review, Library of Congress, May 5,
2014, https://www.loc.gov/bibframe/docs/bibframe
-profiles.html.

13. Dublin Core Metadata Initiative, “dcmi/dctap,”
GitHub, https://github.com/dcmi/dctap.

14. “Application profiles,” RDA Toolkit, https://access
.rdatoolkit.org/Guidance/Index?externalId=en-US
_ala-591ca278-2807-399b-9530-6b44171e6ccc.

15. David Peterson, Shudi (Sandy) Gao, Ashok Malhotra,
C. M. Sperberg-McQueen, and Henry S. Thompson,
eds., “W3C XML Schema Definition Language (XSD)
1.1 Part 2: Datatypes,” W3C Recommendation, World
Wide Web Consortium, April 5, 2012, https://www
.w3.org/TR/xmlschema11-2.

http://alatechsource.org
http://linkeddatabook.com/editions/1.0/
http://linkeddatabook.com/editions/1.0/
https://www.loc.gov/aba/pcc/pilots/URIs-in-MARC-Pilot.html
https://www.loc.gov/aba/pcc/pilots/URIs-in-MARC-Pilot.html
https://sinopia.io/
https://www.loc.gov/aba/pcc/taskgroup/task-groups.html
https://www.loc.gov/aba/pcc/taskgroup/task-groups.html
https://www.loc.gov/bibframe/docs/bibframe-profiles.html
https://www.loc.gov/bibframe/docs/bibframe-profiles.html
https://github.com/dcmi/dctap
https://access.rdatoolkit.org/Guidance/Index?externalId=en-US_ala-591ca278-2807-399b-9530-6b44171e6ccc
https://access.rdatoolkit.org/Guidance/Index?externalId=en-US_ala-591ca278-2807-399b-9530-6b44171e6ccc
https://access.rdatoolkit.org/Guidance/Index?externalId=en-US_ala-591ca278-2807-399b-9530-6b44171e6ccc
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/

