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HAMLET
Neural-Net-Powered Prototypes for Library 
Discovery

Andromeda Yelton*

* Andromeda Yelton (https://andromedayelton.com) is a software engineer and librarian. Currently, she is at the Berkman Klein 
Center. She has written code for the MIT Libraries, the Wikimedia Foundation, and more. She has written, spoken, and taught in-
ternationally on a variety of library technology subjects. She is Past President of the Library & Information Technology Association.

In 2017, I trained a neural net on MIT’s graduate the-
sis collection and used this neural net to power sev-
eral experimental discovery interfaces. The system 

is collectively named HAMLET (“How about Machine 
Learning Enhancing Theses?”), and you can explore 
the results online at the URL in the gray box. What 
does this mean, and what does it imply for the future 
of library discovery?

HAMLET
https://hamlet.andromedayelton.com

What Is a Neural Net?

First, some background on neural nets. In traditional 
software design, programmers create rules that ma-
chines should use to make decisions and encode those 
rules into software. In machine learning, by contrast, 
programmers encode structures that software can use 
to create its own rules. They then train these struc-
tures on data sets—ideally very large ones, with many 
thousands or even millions of records. With each ad-
ditional record, the software updates its model of 
the world a little bit; ideally, it slowly converges on 
a model that will be useful for making predictions 
about or drawing inferences from data it encounters 
subsequently.

There are many structures that programmers can 
use in machine learning systems, and exploring them 

all is outside the scope of this piece. I will briefly elu-
cidate the type of machine learning that HAMLET 
used: a neural net.

Neural nets, as the name suggests, are inspired by 
biology. Our brains aren’t composed of step-by-step 
programs; instead, they’re made of billions of neurons. 
Each neuron can perform a tiny bit of reasoning, re-
sponding to particular stimuli and communicating its 
response to the comparatively small number of neu-
rons it connects to. The collective outcome of all these 
tiny decisions is a rich, flexible reasoning system.

In computational neural nets, each neuron is a 
function that takes certain inputs (stimuli) and re-
turns certain outputs (responses; in practice, typi-
cally a number close to either 0 or 1). It can receive 
those inputs either directly from the training data set 
or from other neurons it’s connected to; its outputs 
may feed into a final output function or may serve as 
inputs for other neurons. Neural nets generally have 
several layers (i.e., sets of neurons that do their work 
in parallel): one that draws directly from the training 
data, another that takes the outputs of the first layer, 
and so forth until the final outputs.

How do these neurons know what outputs to re-
turn? This is determined via training the neural net 
(just as human brains need to spend a long time gath-
ering data about the world in order to form reasonable 
models of it). Before training, programmers deter-
mine the general type of function each neuron should 
be and initialize it with random parameters. (In the 
equation y = mx + b that you met in algebra, m and 
b are the parameters; y = mx + b describes a line no 

Chapter 2

https://andromedayelton.com/
https://hamlet.andromedayelton.com/
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matter what values you give to m and b, but that line’s 
slope and placement can vary dramatically.)

During training, the neural net receives records 
from the training data set, one at a time. For each re-
cord, it compares the final output of the net to some 
sort of expected value. For example, if the inputs are 
photographs, the output might be a binary decision: 
“cat” or “not a cat.” The neural net then evaluates how 
wrong it was and updates all the parameters of all 
its functions a little bit, in whatever direction would 
have made it less wrong. Over time, as it trains on 
a large enough number of records, it gets more and 
more accurate.

Ideally, over time, the neural net not only becomes 
a good model for its training data; it also does a good 
job modeling data that it’s never encountered before. 
(But only similar kinds of data; neural nets trained 
on one knowledge domain may be bizarrely or hilari-
ously wrong when asked to evaluate data from other 
domains.) In practice, this means, for example, that 
a neural net trained to identify cat photos will have 
reasonable accuracy in making cat/not-cat decisions 
about unfamiliar photos. Computers are still not as 
good as humans at this sort of task, and the types of 
mistakes they make are very different from the types 
that humans make (and sometimes incomprehensibly 
weird), but they can handle much larger volumes of 
data much faster than humans, which makes machine 
processing a good fit for some tasks.

How HAMLET’s Neural Net Works

The previous section covered the general concept of 
training neural nets, but was vague on the exact algo-
rithms. That is because many algorithms can be used.

HAMLET uses the doc2vec algorithm. This is an 
algorithm for estimating the similarity in meaning be-
tween different documents, based on a widely used 
algorithm word2vec, which estimates the similarity 
between words.

Word2vec works by assuming that if two words oc-
cur in similar contexts, they likely have similar mean-
ings. For instance, let’s imagine that a set of train-
ing documents included the following two sentences: 
“Avram is important to library science” and “Ranga-
nathan is important to library science.” Word2vec 
would conclude that the words Avram and Rangana-
than must be at least a little bit similar in meaning. As 
it iterates repeatedly over the same training corpus, it 
can use what it’s learned about word similarity from 
earlier passes to make more informed guesses about 
which words are similar. For instance, after it con-
cludes that Avram and Ranganathan have something 
in common, if it encounters a sentence like “Avram in-
fluenced the development of cataloging,” it would be 
inclined to predict that “Ranganathan influenced the 

development of cataloging” is a plausible sentence. It 
would be much less likely to hypothesize that “Race-
cars influenced the development of cataloging,” as it 
probably did not encounter the word racecars in con-
texts like the ones where it encountered Avram or 
Ranganathan.

Doc2vec is an extension of word2vec that adds 
one more fact to every context: to wit, an identifier 
for the document. That is, instead of looking only 
at the words surrounding any given word, it looks 
at those and also the document identifier and takes 
those collectively as the context for a word. The idea 
here is that documents have an overall meaning, and 
this overall meaning helps you predict any individ-
ual word’s meaning—or, conversely, words and their 
context help you predict the overall meaning of a 
document.

It’s important to note that the doc2vec and word-
2vec algorithms learn which words probably have sim-
ilar meanings, but not, in fact, what those meanings 
are. It can learn that Avram and Ranganathan are 
more similar than Avram and racecar, but it doesn’t 
know that Avram was a human being and racecars 
are transportation machinery. Under the hood, each 
word is represented by a set of coordinates in space. 
Similarity between two words is just the distance be-
tween them, the same way that GPS coordinates tell 
you which points on a map are closer together or far-
ther apart. Humans can draw inferences about Avram 
and racecars based on their underlying knowledge of 
humans and machinery, but word2vec cannot, as it 
has no semantic model to draw from.

Neural Nets and 
Traditional Metadata

As a librarian, you’re likely approaching this chapter 
using a framework of cataloging, classification, taxon-
omy, and controlled vocabularies. I encourage you to 
question every assumption that this framework leads 
you to make. In a machine learning context, many of 
these assumptions are wrong. For example:

Neural nets do not produce categories. In traditional 
metadata schemata, works are collocated by their 
membership in a shared category, and each work ei-
ther definitely does or definitely doesn’t have a given 
subject heading assigned to it in a record. In a doc2vec-
based neural net, by contrast, documents are simply 
closer together or farther apart. Every document can 
be viewed as the center of its own category, and you 
can use judgment—more an art than a science—to de-
cide which works are “close enough” to count as simi-
lar. Or you can abandon category boundaries entirely, 
and instead arrange works on a spectrum of similar-
ity: instead of saying that work A is in the same cat-
egory as work B but work C is not, you might say that 
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A is 85 percent like B and C is 32 percent like it, and 
allow your interfaces to reflect that spectrum.

Neural nets can produce clusters, but these clusters 
don’t have (and sometimes can’t have) subject headings. 
In traditional metadata, clusters of documents have 
meaningful labels because we intentionally create 
subject headings around meaningful categories, and 
then we create clusters of works by labeling them 
with particular subject headings. With neural nets, 
clusters may emerge—like cities on a map, some re-
gions in the coordinate space will be more populated 
than others—and we may choose to draw boundar-
ies around them. (See the department visualizations 
example in the section “Future Possibilities” below.) 
However, there is no meaningful label for that clus-
ter until and unless we choose to create one. And it 
is not always obvious what that label should be; the 
neural net can’t explain why it chose to collocate par-
ticular works, and the similarity is derived from a 
mathematical model, not a semantic one. Domain ex-
perts may be able to assign labels, and that assigna-
tion may result in rich and useful interface possibili-
ties, but the label creation is an optional step, not the 
first step. And in some cases, even experts can’t as-
sign meanings because the clusters don’t map to hu-
man concepts.

Neural nets can operate in spaces where traditional 
metadata is unavailable or inadequate. One of the rea-
sons I used the MIT thesis corpus, in fact, is that it’s 
hard to explore due to the nature of its metadata. 
DSpace theses do not have subject headings. They 
do have author-assigned keywords, but most of them 
are so granular that they apply to only one thesis and 
therefore don’t collocate anything. Thesis records do 
include department names, but these are not very 
helpful for two reasons. First, some departments have 
far too many theses for department-level browsing 
to be useful; there are 9,625 theses just in Course VI 
(Electrical Engineering and Computer Science). Sec-
ond, department-level distinctions both collocate the-
ses that don’t go together (in a subject-header sense) 
and separate some that do. To use Course VI again 
as an example, theses in electrical engineering gener-
ally concern completely different tools, ideas, and ma-
terials than theses in computer science. At the same 
time, some theoretical computer science theses could 
be equally at home in a math department, and some 
electrical engineering theses are not readily distin-
guishable from physics.

Subject headings would be the right level of gran-
ularity for exploring this corpus, but they aren’t pres-
ent. Furthermore, they aren’t going to be; providing 
them for all 50,825 theses (and counting) would be 
prohibitively labor-intensive. Training a neural net on 
a corpus this size, however, is no more than a few days 
of background processing on a modern laptop, and 
much less on cloud infrastructure; the human effort 

to design and build that system, while nontrivial, is 
far less than that of cataloging tens of thousands of 
theses.

Are these contrasts between traditional taxono-
mies and neural-net-generated systems good, bad, or 
merely different? That’s a matter of taste. Whatever 
your taste is, I encourage you to think about HAM-
LET and other machine learning systems on their own 
terms, rather than shoehorning them into a catalog-
ing and classification framework they do not fit into. 
They are both more alien and more rife with possibil-
ity than they may initially seem.

HAMLET’s Prototypes

Currently, HAMLET has three prototype interfaces: a 
recommendation engine, an uploaded file oracle, and 
a literature review buddy. You can play with all of 
them at the URL in the gray box.

HAMLET
https://hamlet.andromedayelton.com

The recommendation engine lets you search for 
theses by author or title and tells you which other 
theses are most conceptually similar. This allows for 
an experience analogous to browsing by subject, al-
beit grounded in a very different metadata paradigm, 
where each document is the center of its own subject-
heading universe. For example, the URL in the gray 
box below relates to the PhD thesis for Buzz Aldrin, 
better known as the second man to walk on the moon. 
His 1963 thesis in the Department of Aeronautics and 
Astronautics was “Line-of-Sight Guidance Techniques 
for Manned Orbital Rendezvous.” HAMLET’s ten most 
similar theses are also all in the Aero/Astro depart-
ment. However, they achieve much better relevance 
than department-level metadata alone could provide: 
most of them pertain to spacecraft control and orbital 
navigation, including orbital rendezvous. In addition, 
they span from 1959 to 2007, thus letting readers ex-
plore the development of these ideas across time.

Theses Most Similar to Those of Author 
Aldrin, Buzz
https://hamlet.andromedayelton.com/similar_to 
/author/52842

The uploaded file oracle provides similar func-
tionality, returning a list of theses most similar to 
a starting document. However, instead of starting 
with an existing thesis, it starts with a user-uploaded 

https://hamlet.andromedayelton.com/
https://hamlet.andromedayelton.com/similar_to/author/52842/
https://hamlet.andromedayelton.com/similar_to/author/52842/
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document, which it interprets on the fly in the context 
of the neural net. For example, researchers might up-
load articles they’re reading or chapters of their works 
in progress to discover other, similar documents that 
might be relevant to their research.

Alternately, Jason Griffey (editor of this volume) 
tested it by uploading Peter Pan. This was a text I did 
not expect to work well because neural nets do best 
when they have large volumes of data to train on, and 
a children’s novel is clearly very unlike the STEM the-
ses that make up the vast majority of the training cor-
pus. However, HAMLET gamely produced theses from 
MIT’s tiny creative writing program: unquestionably 
the most similar available works.

One of my first tests was uploading the Wikipe-
dia article on strong and weak typing, a core concept 
in computer programming. This was the first moment 
where I was truly elated about the possibilities of this 
system because it did exactly what I hoped: to wit, 
collocate theses on the same topic from different de-
partments. DSpace’s browsing interface and under-
lying metadata work well only for bringing together 
works with the same author, advisor, or department, 
thus making it impossible to find interdisciplinary 
work; however, many researchers find themselves at 
the borders between disciplines, where the most rele-
vant works may be outside their department and thus 
hard to find via systems that follow disciplinary lines.

Wikipedia: Strong and weak typing
https://en.wikipedia.org/wiki/Strong_and_weak_typing

Given this Wikipedia article, HAMLET’s second 
recommendation was for a computer science the-
sis on type inferencing in the Python programming 
language. This is gratifyingly relevant. But the most 
exciting recommendation is the seventh, “Founda-
tion Elements for Computer Software Systems in the 
Fluid Sciences,” a 1969 thesis in the Department of 
Meteorology.

MIT aficionados will recognize that the Institute 
does not, in fact, have a Department of Meteorology. 
It did until the 1980s (at which point it was renamed, 
and then merged into Earth, Atmospheric, and Plan-
etary Sciences); however, this was long enough ago 
that it is unusual to come across this part of the In-
stitute’s intellectual history. The year 1969 is also in-
teresting because at that point MIT did not yet have a 
department for computer science. The Laboratory for 
Computer Science was founded in 1963, but not until 
1975 did the then-Department of Electrical Engineer-
ing add computer science to its name.

This thesis recommendation, then, tantalizingly 
suggests a moment in history: so early that, not only 
were foundational programming concepts being 

worked out as thesis topics, but also that computer sci-
ence was scattered across the campus, finding homes 
in the laboratories of whatever early-adopter profes-
sors saw an application for these new machines. More-
over, this early-adopter professor is Edward Lorenz, 
the pioneer of chaos theory popularly known for the 
butterfly effect. This is a phenomenon that character-
izes certain complicated mathematical models, such 
as the ones that describe the weather. Being compli-
cated, weather models benefited enormously from the 
growing availability of computers . . . which is why a 
graduate student was working out fundamental pro-
gramming concepts in the laboratory of a famous me-
teorologist. It’s a thesis title, but it’s also a story.

Finally, the literature review buddy suggests 
sources you may want to incorporate into your re-
search. It uses the uploaded file oracle back end to 
find the theses most similar to your uploaded text and 
then lists for you all the sources that were cited by 
these theses. There are both precision and recall chal-
lenges here in that the bibliographies were not avail-
able as structured data; I had to parse them out of 
the full text, which was complicated by underlying 
inaccuracies in the OCR. A production-grade system 
would have significant data quality questions to an-
swer. However, imagine how useful this type of sys-
tem could be: a student could upload a work in prog-
ress and immediately get a list of all works cited by 
related theses. With sufficient metadata quality, this 
list could be ranked by how many theses cited each 
work, filtered by any number of criteria, and even 
linked directly to borrowing or interlibrary loan op-
tions. It might even surface options unlikely to be 
found through any traditional catalog search, such as 
unpublished works or personal communications.

Traps for the Unwary

While HAMLET, like any sufficiently advanced tech-
nology, can seem like magic, it’s merely software plus 
data. As such, it reflects the limitations of its algo-
rithms and the biases of its underlying corpus.

First, all machine learning systems share a prob-
lem, which is that they are only as good as the data 
they are trained on. If that corpus has significant bi-
ases or omissions, those will be reflected in the out-
puts. Additionally, machine learning systems need a 
large amount of data to work reliably; when they are 
trained on too little data, they may still produce re-
sults, but those results are nothing more than elabo-
rately obfuscated dice-rolling.

In the MIT case, the most obvious limitation of 
the corpus is that MIT almost exclusively awards de-
grees in STEM topics, plus management. This means 
that the HAMLET neural net is likely to work well 
for content in fields like electrical engineering: it will 

https://en.wikipedia.org/wiki/Strong_and_weak_typing
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produce a large number of results, many of those re-
sults will be above a high similarity threshold, and us-
ers can be reasonably confident that the system knows 
what it’s talking about. It may produce results in fields 
like philosophy or writing, but—Peter Pan notwith-
standing—those results are more tenuously connected 
to real meaning. If users upload texts that reflect (for 
example) art history, education, or dance, HAMLET 
may produce no results at all—or, worse, it may pro-
duce results that are almost certainly not grounded in 
meaning.

This suggests a second problem with neural nets, 
which is their relationship to human users. People may 
assume that computer systems are objective, compre-
hensive, or otherwise absolutely correct. They may 
think that the outputs represent absolute facts rather 
than statements about probability—in the HAMLET 
case, this would mean assuming that all given theses 
are definitely very similar to the original text, rather 
than probably somewhat similar. (While HAMLET 
does produce a similarity estimate, this isn’t reflected 
in the current interface; even if it were, people might 
not read it or know how to contextualize it.) Or they 
might assume the opposite—that coming across one 
thesis that they know isn’t relevant means the whole 
system is useless. Artificial intelligence does not actu-
ally remove the need for human intelligence. 

Finally, and most worrisomely, users may think 
that the outputs of a computer system represent a nor-
mative rather than a descriptive fact: a statement about 
how the world should be rather than what a particu-
lar part of the world is. For an example of the poten-
tially high stakes of this question, do an image search 
for “CEO.” Likely the results will overwhelmingly be 
pictures of white men. This is an accurate descriptive 
statement about CEO demographics—but it is not a 
normative statement that only white men should be 
CEOs! These image results do not carry any informa-
tion about the leadership abilities of any other demo-
graphics, but it is easy to believe they do. After all, if 
Google said it, it must be true.

Future Possibilities

Where else can we go with interfaces that have neural 
nets of this type on the back end?

My next goal is data visualization. The neural 
net encodes information about connections between 
texts, but they’re not easily explorable in a text-only 
interface. Imagine, instead, a map where smaller or 
larger circles, more or less widely spaced, showed the 
clusters of meaning in the corpus. By zooming in to 
clusters, you could see the individual connections be-
tween texts that made them up. This would facilitate 
several types of explorations:

• First, it would be instantly apparent where the 
corpus—that is, MIT’s intellectual history—had 
strengths and gaps. This might be of interest to 
collection development librarians or critical so-
cial theorists.

• Second, by applying a date slider, you could watch 
as particular areas of research grew and shrank 
over time.

• Third, if dots representing individual theses 
were color-coded by department, interdisciplin-
ary works and topics would become instantly 
apparent. 

• Fourth, and perhaps most importantly for anyone 
who wants to demonstrate the value of the library 
to the faculty, users could ego-surf. People could 
search for works they wrote, or advised, and in-
stantly see the network of related works. Some 
would doubtless be familiar, but others might 
come from other departments or decades. People 
new to an organization or trying to find their way 
in a large university could quickly find others 
with similar research interests. People operat-
ing near, or outside, the limits of their discipline 
could find collaborators in other departments.

You can see some preliminary investigations as to 
how this visualization might work at the MIT Librar-
ies Machine Learning Studio. In the blog posts here, I 
used d3.js, plus prototype neural nets trained on sin-
gle departments, to explore clusters of related works 
in the aeronautical and astronautical engineering, 
chemistry, and physics departments. While the algo-
rithm can’t generate topical labels for these clusters—
we still need humans for that—their existence and 
relative size stand out quickly. By manually explor-
ing thesis titles within particular clusters, I can see 
some semantic unity to these clusters. For instance, 
the larger blue cluster in the aero/astro department 
generally concerns compressor performance and aero-
dynamics; the smaller red one is all about the charac-
teristics of composite laminates under stress.

MIT Libraries Machine Learning Studio
https://mitlibraries.github.io/ml2s

I also used these preliminary investigations to 
trace the meaning of a single word through the cor-
pus. In the resulting blog post, “Six Ways of Looking 
at Oxygen,” I found that the meaning of the word ox-
ygen varies substantially depending on the disciplin-
ary lens you use. In a neural net trained on aero/astro 
theses, oxygen is most similar to words like hydrogen, 
water, and propellant, and isn’t too far off from hyper-
golic: if all we know about the world is aero/astro, ox-
ygen is rocket fuel. In the chemistry department, by 

https://mitlibraries.github.io/ml2s/
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comparison, oxygen is like nitrogen and chlorine: it’s 
an element (a gaseous one in the upper right of the 
periodic table, even). And if you’re a biologist, oxygen 
is close to one cluster centered on energy and another 
centered on nutrient; it’s fuel again, not for rockets but 
for organisms.

Six Ways of Looking at Oxygen
https://mitlibraries.github.io/ml2s/2017/07/06/six-ways 
-of-looking-at-oxygen.html

As noted above, the word2vec and doc2vec al-
gorithms don’t natively understand the meanings of 
these clusters; we still need humans (for now) with 
domain knowledge to explore and label them. Other 
machine learning techniques, such as topic model-
ing, might prove useful complements to these neural 
net techniques by automatically extracting labels for 
clusters. Alternately, neural nets and skilled catalog-
ers together could generate wholly new and compel-
ling interfaces.

None of this is precisely easy; though software 
to streamline machine learning is increasingly avail-
able, applying it without understanding the underly-
ing mathematics can easily result in attractive non-
sense. Cleaning existing documents and metadata to a 
production-ready state can be formidable; algorithmic 
interfaces are sometimes much less tolerant of messy 
data than humans are. At the same time, none of this 
is precisely as hard as it seems, either; HAMLET was a 
side project fit into spare hours.

In summary, machine learning techniques allow 
for exploratory, sometimes visual, interfaces that sup-
port old use cases in new ways, or allow for new uses. 
They can complement traditional metadata, but also 
open up possibilities for document sets that do not 
have, and may be unlikely to get, such records. They 
can challenge our understanding of library use cases, 
interfaces, and metadata. Above all, I hope that they 
can surprise and delight, startling us as we round an 
intellectual corner to discover something so relevant 
it feels like magic, just as all the best library experi-
ences should.

https://mitlibraries.github.io/ml2s/2017/07/06/six-ways-of-looking-at-oxygen.html
https://mitlibraries.github.io/ml2s/2017/07/06/six-ways-of-looking-at-oxygen.html



