
26

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

Whenever I speak on library code issues, one of
the first questions I get is, “How can I learn
to code?” If that was your question, this

chapter is for you. I’ll discuss respondents’ recommen-
dations for learning strategies and resources. I’ll also
cover the various forms of workplace support librari-
ans have received in learning to code so that you know
what to ask of your manager, or what to provide if you
are a manager.

Learning Strategies and Resources
That Coders Recommend

I asked survey respondents what they would recom-
mend to people who’d like to learn to code. The recur-
ring themes were these:

• find a project
• rely on Google and existing code
• write documentation
• persevere
• find a mentor

Of these, finding a project is the most important. It
doesn’t matter if it’s for work or for fun, though it will
be easier to get professional development support for
work projects; it just has to be important to you. Hav-
ing a goal you’re committed to will help you persevere
through the inevitable challenges (see below). It will
give you a sense of accomplishment when you make
progress; it may even have real-world impact, which
is tremendously motivational for many coders. It can
also provide natural answers to questions like “What
programming language should I learn?” and “What do
I need to learn next?”

What sort of project? You may already have one
in mind, in which case, start there! If not, automate
a repetitive task, simplify a bothersome workflow,
or improve some element of user experience. Or, of
course, take on one of the projects in this report! Most
of them can be accomplished in under a hundred lines
of code; you’ll need a solid grasp of programming fun-
damentals, but you don’t need a deep grounding in
computer science or years of experience. Write one
from scratch, rewrite one in your preferred language,
or modify one to work better for you; the scripts in
this report are intended to be a springboard for you.
Whatever you choose, make it as small as possible (or
break it down into small parts) so it doesn’t get too
overwhelming, and feel free to incorporate working
code snippets you find online. The sooner you can get
something interesting working, the sooner you’ll feel
rewarded and capable.

This brings us to the second piece of advice, rely
on Google and existing code. Modifying existing code is
not cheating! There’s a good chance someone else has
already written code to do most of what you want; the
ability to read and edit others’ code can get you a long
way, even if you never write your own programs from
scratch. Even experienced programmers regularly
look up syntax details and copy and paste code snip-
pets from around the web. Googling for something like
“[programming language] [problem keyword] exam-
ple” will often turn up helpful code samples and Stack-
Overflow advice. Spending some quality time brows-
ing library coders’ GitHub repositories can yield lots
of useful code and inspiration, too. The Code4Lib wiki
page “Libraries Sharing Code” is a good starting place.
Many of the people cited in this report have GitHub
repositories as well.

Learning to Code

Chapter 6

27

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

intense ways code learning can push us into impos-
tor syndrome, can make us feel we don’t belong (par-
ticularly if we’re not a 19-year-old white male in a
hoodie), can make us feel frustrated and anxious and
overwhelmed. You probably will feel that way if you
learn to code, and that’s okay. One of the biggest
things, in fact, that learning to code will give you is a
toolbox for handling those feelings and the knowledge
that you can do the work even if you’re intimidated.

This, however, is a big reason that it’s good to find
a mentor. Mentors are great for answering technical
questions and for telling you about tools and best prac-
tices that may not be written in books. But they’re also
great for holding your hand, cheering you up, and bol-
stering your self-confidence.

Where do you find one? If you have a friendly,
technically skilled colleague at work or a nearby insti-
tution, that’s ideal. Some institutions (e.g., the George
Washington University and the University of Mary-
land) have even started regular code-learning groups
for their librarians. If you can’t find a nearby colleague,
the numerous technology-focused library conferences
are great places to meet people. Nonlibrary technol-
ogy can also be a good place to look. Many technical
groups organize on Meetup.com; look for nearby meet-
ups focused on your technology of choice. Be aware,
though, that not all are beginner-friendly, and some
can be downright hostile to women or people of color;
look for groups that have outreach events, codes of
conduct, or other clear commitments to hospitality.
There are also technical groups focusing on outreach
to specific populations that may be relevant to you,
like PyLadies, PyStar, RailsBridge, and Trans*H4CK.
All of these groups (plus ones focused on outreach to
children, like Black Girls Code) are constantly looking
for meeting space; if your library can offer some, that’s
a great way to build bridges to your local technical
community, too.

StackOverflow
http://stackoverflow.com

Libraries Sharing Code
http://wiki.code4lib.org/Libraries_Sharing_Code

Not familiar with GitHub? You don’t need an
account to browse and download code. However, it’s
more useful once you have an account so that you can
fork repositories (i.e., make your own copy to edit) and
master a few basic commands. The LITA Library Code
Year Interest Group has a hands-on tutorial available.

Learn GitHub tutorial
https://github.com/LibraryCodeYearIG/Codeyear-IG-
Github-Project

Google, StackOverflow, and (to a lesser extent)
GitHub work as learning tools because people have
invested time in documentation. Pay it forward! Writ-
ing up your own learning process can be helpful to
those who come after you—notably including yourself
in six months, when you’ve forgotten everything you
were thinking today. Organizing your thoughts well
enough to write them is a good self-teaching tool.
Additionally, many open-source projects want help
with documentation as well as code, and this can be an
easier route than code to begin contributing. Read the
project guidelines, look for a bug tracker with open
documentation bugs, and make things better while
your memory is fresh. Finally, writing documentation
increases the chances that others will build on your
work; seeing others succeed because of your work can
be motivational and rewarding.

Step four: persevere. Learning to code is hard! You
must devote a lot of time to it. Also, you’ll make mis-
takes, and some of them will be hard to debug. Begin-
ners often think this means they don’t have the apti-
tude, but they’re wrong; coders at all levels constantly
run into challenging bugs. As Kate Roy says, “There is
no mastery, there is no final level. The anxiety of feel-
ing lost and stupid is not something you learn to con-
quer, but something you learn to live with.”1 Or, as
Cecily Carver notes, in an outstanding Medium article
on what she wishes she’d known as a new coder, “I’ve
found that a big difference between new coders and
experienced coders is faith: faith that things are going
wrong for a logical and discoverable reason, faith that
problems are fixable, faith that there is a way to
accomplish the goal.”2

People don’t talk enough about emotion in learn-
ing to code. They talk about languages and tools and
MOOCs and books, but not about feelings: about the

“Very recently, a cataloging support staff member
presented me with a printout of one of my old OCLC
Macro Language cataloging scripts. The script pro-
duced a template MARC record for a title from a spe-
cific e-book collection, and she had edited it, largely
correctly, to make the record it produced comply with
new Resource Description and Access cataloging
practice. She had ‘discovered’ programming by way
of one of my scripts—this was very thrilling to me!”
—Carrie Preston

“You have to keep persisting. This is very different
from writing a LibGuide or a handout.”
—Bohyun Kim

28

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

librarians, I’m skeptical of unstructured and unsup-
ported learning experiences. Because there’s so little
formal pipeline for teaching librarians to code, those
librarians who do are, almost definitionally, the ones
who do well with self-teaching, and their recommenda-
tions demonstrate a certain survivorship bias. I believe
many librarians who aren’t already coding, but want to,
are more likely to succeed with a more structured,
social experience. I’ve also been more generally
impressed with the curricula in O’Reilly books than in
free online courses; whatever your language of choice
is, O’Reilly almost certainly publishes an introduction.

Other specific resources recommended by respon-
dents include:

• The Art of UNIX Programming, by Eric S. Raymond,
https://openlibrary.org/works/OL6036022W/
The_art_of_UNIX_programming. Many librarians
find that command-line tools are even more useful
than programming languages.

• _why’s (Poignant) Guide to Ruby, a sui generis, part-
cartoon introduction available free online, http://
mislav.uniqpath.com/poignant-guide/book.

• Python Programming in Context, by Bradley N. Miller
and David L. Ranum.

• The Pragmatic Studio, “Ruby Programming,”
online course, $132 with discounts and free trial
available, http://pragmaticstudio.com/ruby.

• Lynda.com courses, www.lynda.com. In my experi-
ence, these are somewhat advanced for beginners,
but excellent if you have a bit of prior experience, or
good mentors; many libraries have a subscription.

• Google’s Python Class, https://developers.google
.com/edu/python. This resource is also best suited
for people with some background; it is free, with
good practice exercises.

• Formal courses available at your institution or in
your area. These will probably be more theoreti-
cal than many librarians want and will likely not
address library use cases, but taking even one will
make it much easier to get mileage out of free
resources.

It’s also worth noting that several respondents
said you should not try learning to code—or, at least,

Meetup.com
www.meetup.com

PyLadies
www.pyladies.com

PyStar
http://pystar.org

RailsBridge
www.railsbridge.org

Trans*H4CK
www.transhack.org

Black Girls Code
www.blackgirlscode.com

Finally, while in-person mentors are generally
better, it’s okay if you don’t have access to them; the
mailing lists and IRC channels for Code4Lib, LITA-L,
LibTechWomen, and the like can expose you to cur-
rent thinking and give you a place to ask questions.
LibTechWomen has been running Code Club discus-
sion groups; it’s easy to set one up yourself by follow-
ing Saron Yitbarek’s advice.

Saron Yitbarek, “Reading Code Good”
http://bloggytoons.com/code-club

You may have noticed there’s one question many
beginners ask that I didn’t answer here; to wit: “What
language should I learn?” That’s because there’s no
one answer to this question. Survey respondents wrote
library code in fourteen different languages. The best
language for you to learn depends on your personal
taste, whether you have ready access to a community
of experts, and above all the project you want to write.
If you’re modifying existing code or participating in
an established open-source project, the choice of lan-
guage is already made. If you’re starting from scratch,
your choice of project still influences your choice of
language; for instance, web development probably
means JavaScript, and MARC processing wants a lan-
guage with an established MARC library, like ruby-
marc, Python’s pymarc, or PHP’s File_MARC. Look for
projects similar to the one that you want to do (includ-
ing the projects in this report) and use their language
choices as a guideline.

Finally, what tools should you use for learning?
Google and Codecademy came up frequently in survey
respondents’ recommendations. While they have value
(and Google is indispensable), as a teacher of code to

ruby-marc
https://github.com/ruby-marc/ruby-marc

Python’s pymarc
https://github.com/edsu/pymarc

PHP’s File_MARC
https://github.com/pear/File_MARC

29

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

that you should do it only if you’re genuinely passion-
ate about it and not just to check off a line on your
resume. They indicated that people without this pas-
sion either would not succeed or would not become
very good coders (and they felt that the world does
not need more low-skilled coders). I agree in part
and disagree in part. Coding is challenging enough
that commitment is necessary; if you don’t have that
commitment, by all means spend your time on other
things—there’s no shortage of skills that will enrich
your life and work! And becoming a deft, insightful
coder is a full-time pursuit, and thus out of scope for
most librarians. On the other hand, as we’ve seen in
this report, you don’t need to write large-scale, pol-
ished, reusable software in order to get big bene-
fits from learning to code. Automating a task with a
few dozen lines of code can save you many hours in
a year. Even if you’re a barely adequate coder, you
can spend those extra hours being a fabulous original
cataloger or research consultant or department head,
employing human judgment and doing tasks the com-
puter can’t.

Workplace Support

Because learning to code can be time-consuming—and
because librarians’ code skills can be so beneficial to
their institutions—it is both helpful and relevant for
librarians to receive professional development sup-
port in learning to code. I asked respondents what, if
any, workplace support they had received; I also asked
managers what, if any, they had provided or would
provide.

Answers varied significantly. While managers
who code understand uniformly the value in support-
ing this skill, not everyone is lucky enough to have
such a manager. Among institutions that do support
code learning, funding and policy vary. Among sur-
vey respondents, the gold standard was set by Evviva
Weinraub Lajoie at Oregon State University Libraries
& Press. She provides employees with twenty hours

per month of learning time, at least one conference per
year, access to paid online tutorials, and even struc-
tured internships. Other libraries can’t offer this level
of support, but at least provide informal mentorships,
code review, and the like.

Unfortunately, some librarians have no support,
or even face active hostility. Some institutions simply
don’t have pertinent checkboxes on their paperwork,
and it’s hard to pertinent the relevance of these skills
to a faceless bureaucracy. Two managers were unable
to secure coding skills development for interested
supervisees because their institutions did not want to
reclassify them into higher salary categories reflecting
those skills. And, as we saw in chapter 5, one librar-
ian who spends a significant amount of time coding
is doing so without upper management’s knowledge;
in that institution, only people belonging to other,
explicitly technical, units are allowed to code. (Mid-
dle management “works pretty hard to keep me writ-
ing code as much as possible, even letting me out of
some regular meetings because they know I can con-
tribute more if I’m tickling a keyboard,” says this
librarian, who will remain anonymous for obvious,
though distressing, reasons.)

Tech-savvy managers uniformly recognize the
value of these skills and are willing to support them.
Not all of them have supervisees who are interested,
and the availability of funds varies, so the specific sup-
port provided does also. However, types of support
that managers provide include:

• time: finding ways for planned projects to include
learning new technologies, setting aside time for
learning and experimentation, defending this time
to upper management

• books
• software licenses
• root privileges, development sandboxes, testing

servers, quality hardware: in short, the ability to
install and experiment with software

• conference attendance: supported in time, money,
or both

• workshops: some paying for attendance, others
teaching them personally

• regular study groups, such as the one at the Uni-
versity of Maryland libraries or the George Wash-
ington University code reading group

• courses: online (such as Lynda.com, Code School,
RailsCasts, Treehouse) or face-to-face, through
tuition remission in the case of academic libraries

• code review
• mentorship
• formal internship programs
• making coding skills part of supervisees’ perfor-

mance goals, which helps justify other forms of
support

“For the, the big thing was *find the right introduc-
tion*. There are a lot of guides for learning to code
around, many of whom assume this or that reason
why you might want to program, or start with the
assumption that you have pre-existing knowledge of
how to program. I learned to program from _why’s
(Poignant) Guide to Ruby, and I think this sentence is
the very moment it clicked: ‘You will be writing stories
for a machine.’ Coding as creative act, as artwork.
Not algorithms or math or business rules. That caught
my attention, and that got me going.”
—Misty De Meo

30

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

University of Maryland Libraries Coding
Workshop
https://github.com/umd-coding-workshop/website/wiki

Lynda.com
www.lynda.com

Code School
https://www.codeschool.com

RailsCasts
http://railscasts.com

Treehouse
http://teamtreehouse.com

Conclusion

Throughout this report, you’ve seen how librarians use
short programs to make their work lives better in con-
crete ways, the opportunities (and obstacles) posed by
code, and strategies you can use to start learning or to
upgrade your skills.

Now it’s your turn! Pick a project, find a class, put
together a study group: whatever your next steps are,
get started.

Whatever you do, you can always find source
code for the projects discussed in this report, plus oth-
ers that didn’t fit—including the source code for the
Django app I wrote to keep track of my own survey
data—on the companion website. If you have a proj-
ect you’d like to share—particularly one you wrote as
a result of reading this report!—I’d love to feature it
there as well; instructions are on the site.

Companion website
https://thatandromeda.github.io/ltr

Notes
1. Kate Ray, “Don’t Believe Anyone Who Tells You

Learning to Code Is Easy,” TechCrunch, May 24,
2014, http://techcrunch.com/2014/05/24/dont-
believe-anyone-who-tells-you-learning-to-code-is-easy.

2. Cecily Carver, “Things I Wish Someone Had Told Me
When I Was Learning How to Code: And What I’ve
Learned from Teaching Others,” Medium, November
22, 2013, https://medium.com/@cecilycarver/things-
i-wish-someone-had-told-me-when-i-was-learning-
how-to-code-565fc9dcb329.

