
22

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

The original concept of this report encompassed
only code samples and analyses and learn-to-
code resources. However, survey responses dis-

cussed the political and social dimensions of library
code so often as to make them inseparable from the
technical dimensions.

Sometimes, this was positive. Matt Weaver’s digital
signage code (chapter 4) “rescued a rather expensive,
and unpopular project”; along the way, he “learned
a lot about the emotional impact a technology proj-
ect can have across staff.” Coral Sheldon-Hess’s RSS-
cache code (chapter 4), which enabled the library to
display its diverse social media presences on its home
page, incentivized staff members to write more social
media content because they were excited to see their
new material on top. Hillel Arnold’s Captain’s Log was
written specifically to solve a communication prob-
lem, giving staff from different reading rooms an easy
way to leave each other notes.

Hillel Arnold’s Captain’s Log
https://github.com/RockefellerArchiveCenter/captains-log

Respondents wrote of positive emotional impacts
on themselves, too. Evviva Weinraub Lajoie discov-
ered “I was capable of building something that thou-
sands of people across the world use to access elec-
tronic resources, which was really quite powerful and
empowering for me.” Several people wrote of their
pleasure when their code or documentation helped
coworkers to advance their own skills. Jeremy Dar-
rington (chapter 4) said, “I like that coding makes me
feel that I’m not helpless, that I can solve some of the
problems I face with tools at my disposal.”

On the other hand, not all emotional responses
were so positive. Many library coders spend a signifi-
cant amount of time trying to cultivate buy-in, educate
their colleagues about technology, or work against
siloed organizational structures as they produce inher-
ently cross-departmental work. Code can challenge
hierarchies and change workflows, leading to resis-
tance. And, as one librarian writes, “there are folks
out there who will hold on to their assumptions about
how patrons use library tools no matter what data you
show them. (And a corollary, if your data goes against
assumptions that are necessary for the survival of a
way of thinking or a business, look out. Folks will get
NASTY.)”

Coding in libraries often requires the political
skills to generate buy-in, surmount institutional bar-
riers, and navigate relationships with management
who don’t understand what you do. Managers who do
understand, or are sympathetic to, coding may face
similar challenges on their supervisees’ behalf. This
chapter outlines issues respondents faced and tech-
niques they used to support and advocate for their
projects.

Library Coders’ Job
Descriptions and Realities

One complication for many library coders is that their
job descriptions don’t necessarily involve coding. They
may have duties that can be achieved far more quickly
and effectively with code than by traditional means,
or indeed that require at least occasional code editing
to be accomplished, but coding is nowhere in the job
description. As Carrie Preston puts it, “Certainly my
supervisors in my earliest positions never conceived of

Political and Social
Dimensions of Library Code

Chapter 5

23

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

my job as being ‘about coding,’ and I think my activi-
ties remained largely mysterious and unfathomable in
their eyes.”

In some cases, this can make professional develop-
ment and managerial support hard to come by, even
when management recognizes the quality of employ-
ees’ output. Other librarians, like Angela Galvan, find
that “My job description and what I actually do all day
are increasingly disconnected things.” This may result
in a tacit, laissez-faire kind of support, as long as the
required work is getting done somehow. On the other
hand, a substantial minority of librarians surveyed
found that coding became an official part of their jobs,
incorporated into subsequent job descriptions, as man-
agement recognized its value. For example, Carrie
Preston found that “eventually some other members
of the cataloging department began to use some of the
scripts I wrote, and batch editing and batch loading of
bibliographic data (which often involves some coding)
did become a formal job responsibility.” Josh West-
gard is now in a job that is about half coding because
he “advocated for the automation of many previously
manual tasks.”

Across the board, librarians with tech-savvy man-
agers had an easier time getting support for their cod-
ing activities (whether formal, like courses, or infor-
mal, like time to code at the office as long as the work
got done). While many librarians did not indicate
whether their managers also had coding skills, 100
percent of those who said their managers were tech-
savvy also said they had received some professional
development support. Similarly, 100 percent of the
coding librarians who are also managers mentioned
offering professional development support for cod-
ing skills to their supervisees. Indeed, several respon-
dents who are not managers create and run technology
workshops for their coworkers.

Buy-in

One issue that came up frequently was buy-in.
Although library coders are often solo, and individuals
can do a lot with code, it’s hard to turn code into a use-
ful service for the library without cooperation. Access
to testing and deployment servers, authority over web-
site content, and time for developing and maintain-
ing projects all need institutional support. Numerous
respondents talked about both strategies for gaining
that support and limitations when they didn’t get it.

Bohyun Kim recommended Tito Sierra’s exception-
ally useful Project One-Pager. This is a document writ-
ten collaboratively by stakeholders in order to come
to a shared understanding of a project. It specifies key
information like project scope (including what’s out of
scope), deadlines, and participants. Not only does this
shared understanding promote buy-in, but it also helps

everyone see when a project is finished and get the
morale boost that comes along with successful project
completion.

Project One-Pager
www.slideshare.net/tsierra/the-projectonepager

Coral Sheldon-Hess has also achieved buy-in
through documentation. She worked with the web
team to write up guiding principles for web design,
content, and process.1 Through researching this docu-
ment, her team reached a shared understanding of best
practices; by writing them down, they generated a ref-
erence point for the library as a whole. Sheldon-Hess
shared her thoughts on this process in a 2013 LITA
Forum presentation.2

Documentation can be useful for buy-in through-
out a project life cycle, too. Terry Brady notes that it
“can allow users to learn at their own pace and to re-
visit the documentation as often as needed. This is a
great approach to achieving buy-in for a solution.”

Other respondents achieved buy-in through
directly demonstrating the value of library code.
Robin Camille Davis did a live coding demonstration
of her EZproxy script (chapter 3), and “the people I
was with at that demonstration (the systems librarian
and the systems manager) were very impressed and
got that ‘We can do ANYTHING with Python!’ gleam
in their eyes.” Other respondents recommended pilot
projects. Often it’s hard to talk about what code can
do in the abstract, but people respond strongly to
prototypes.

Eric Phetteplace (chapter 4) found that his code let
his library do a better job of demonstrating its value
on campus. Once his form validation code ensured
that they were collecting sound reference statistics,
they could see that 60 percent of their questions were
about technical help. This helped the library advocate
for its role in computer literacy and challenge assump-
tions that it dealt only with books.

Several respondents, particularly in technical ser-
vices, were able to make strong arguments about the
time-saving value of code. We saw in chapter 2 that
Becky Yoose saved one to two weeks of cataloger time
every year by scripting a repetitive task. Similarly,
Carrie Preston noted that “as my department’s then-
only regular user of [OCLC Macro Language] scripts,
I had several times the cataloging productivity of any
other cataloger in that department, even while spend-
ing a smaller percentage of my time on cataloging.”
And Annie Glerum (chapter 2) found “that even with
reduced staffing, it is possible to achieve both quality
and timeliness.”

And, when all else fails, some coders go rogue. One
noted, “I have learned intentionally breaking systems

24

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

known to be fragile is a good way for me to gain the
permissions I need to do the work I’d like.” Of course,
it’s always better if the library administration and IT
are on board! But coders are by definition inclined to
make (and break) things; they tend to find places to
exercise their skills or grow deeply frustrated if they
can’t. One respondent was irked that his code, which
made it easier for website users to access digital con-
tent, had limited impact because of inadequate sup-
port for digitization. He “learned that the impact of
code can be limited by administrative lack of resolve,
understanding, and focus.” And at least eight of the
fifty-three survey respondents have changed jobs
between answering the survey in spring 2014 and this
writing in November 2014. While their reasons vary,
this does point to how hard it is to keep coders satis-
fied if they don’t have scope for building things.

Finally, several respondents raised the issue of
mission-criticality, but without agreement. Some said
that coding mission-critical projects is a good way to
achieve buy-in and sustain motivation; others noted
that working on key projects is a good way to justify
professional development support. However, as Becky
Yoose says, “Do not start coding on a project that’s
mission-critical because that is a good way to fail.” She
and others recommended building small pilot projects
to demonstrate value and build skills before tackling
critical services.

Institutional Barriers

Many librarians were missing some important kind
of institutional support for learning and writing code.
These missing pieces fell into three broad categories:

• lack of support for learning
• lack of support for doing the work
• lack of collaboration

One librarian who hadn’t received support for
learning to code said, “Coding is really useful, but
you’re just supposed to know it.” Many respondents
reported learning to code on their own time, outside
of work. Some librarians had difficulty convincing
employers to let them spend professional development
funds on code learning; indeed, one manager could not
secure support for a supervisee because the higher-ups
“didn’t want her to learn because that would mean that
they would have to bump her up a classification level.”
Other librarians simply didn’t have enough profes-
sional development funds to cover high-impact learn-
ing opportunities like formal classes or conferences.
In many cases, the best form of support described was
benign neglect—managers who didn’t know what
these librarians were doing but wouldn’t stop them
from coding as long as things got done somehow.

Other librarians who already have the skills to
code described environments that were hostile to
doing that sort of work. Lack of access to servers or
permission to install software is a recurrent problem;
one librarian says, “I mean, seriously, there is one sec-
tion where I parse XML with regular expressions. But
at the time I didn’t have access to install libxml on
the system!” Another librarian, whose resume is code-
heavy and who was hired in a systems role, found that
his managers expected him to use only proprietary
software, even when open source options (which he
had the expertise to implement) would have been bet-
ter or cheaper. They also expected him to call vendor
support rather than figuring out problems on his own.
In one extreme case, a librarian who spends well over
half his time on coding and related tasks is at an insti-
tution where most units (including his) are explicitly
banned from touching code. His middle management
recognizes how valuable his work is and finds ways to
protect the time while keeping upper management in
the dark.

Unsurprisingly, isolation is a major issue for many
coding librarians. They may be the only ones in their
department, or even their library, who know how to
code. Organizational and cultural barriers may pre-
vent them from collaborating with IT or with librar-
ians in other institutions. This is particularly unfortu-
nate because, contrary to popular stereotypes, coding
is a profoundly social occupation. Most programs of
any size are written by teams; most learning takes
place through shoulder-surfing, code review, and
other forms of pair programming or mentorship. This
is especially true for advanced programming skills,
like making good decisions about the overall organi-
zation of programs, and for everyday craft knowledge,
like discovering good editing and debugging tools.

One librarian wrote, “We had a systems librarian
who was very much the fabled hardcore geek of yore,
who had basically single-handedly programmed much
of the infrastructure we depended on (e.g., ERMS, web-
site CMS, etc.) but was known to only work on a prob-
lem if he believed it to be important (not many external
suggestions—even from the [University Librarian]—
passed this test).” There are good reasons for people
to be territorial about code—it’s important to have
high standards of quality and maintainability for

“The institution, however, only gives me $500 in pro-
fessional development funds per year so although
the resources are here to learn whatever I want, any
structured learning I want to do comes out of pocket.
As it is, the institution is not paying for me to speak
at conferences related to my job directly unless they
are planned for 12+ months in advance, and I do not
have the time to play institutional Calvin Ball with a
budget office that doesn’t know how libraries work.”

25

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

mission-critical applications—but at this extreme, the
whole institution is held hostage because only one per-
son understands the code. The respondent taught him-
self enough code to solve some problems that the sys-
tems librarian wasn’t interested in fixing, but this was
an enormous lost opportunity for knowledge transfer.
Furthermore, since he is self-taught, he recognizes that
he doesn’t “have any of the best practices that make
code sharing easier.” This, in turn, will make it harder
to collaborate with any future coding coworkers.

Of course, many librarians who code do not have
even one coworker they can talk to about code. In
their case, the ability to share code and participate in
open-source projects is critical for skills development.
Many libraries, however, do not have formal policies
on whether code can be shared and may not have an
informal consensus; some are actively hostile to open
source. Dale Askey outlined diverse reasons for this
hostility, including perfectionism, fear of ongoing sup-
port responsibilities, and misunderstanding of open
source.3 The upshot, however, is untold wasted hours
of duplicated work and limits on librarians’ ability to
increase their own skills.

Bohyun Kim (who ran into this challenge herself)
recommends thinking about open source and intel-
lectual property from the very start. Coders are often
in fairly junior roles and may not have the ability to
negotiate with their institutions; however, it’s good
to identify what approvals you would need to release
your code and who owns it. If you can identify, or cre-
ate, a release procedure, your code will be more useful
and personally rewarding.

Notes
1. Anna Bjartmarsdottir et al., “Plan for the Web Pres-

ence,” UAA/APU Consortium Library, November 10,
2013, http://connect.ala.org/node/213992.

2. Coral Sheldon-Hess, “Getting Buy-in on User Centrici-
ty,” presentation. LITA Forum, Louisville, KY, Novem-
ber 7–10, 2013, www.slideshare.net/csheldonhess/
lita-forum.

3. Dale Askey, “Column: We Love Open Source Soft-
ware. No, You Can’t Have Our Code,” Code4Lib Jour-
nal, no. 5 (December 15, 2008), http://journal.code
4lib.org/articles/527.

