
16

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s 
al

at
ec

hs
ou

rc
e.

or
g 

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example  Andromeda Yelton

Overview

The scripts in chapters 2 and 3 focused on back-of-
the-house functions: data quality and technical ser-
vices workflows. In chapter 4, we’ll talk about services
patrons interact with directly. One of the wonderful
things about coding in libraries is that it inherently
breaks down silos: while librarian coders often emerge
from technical services, they can be found anywhere,
and their work can affect—and link—numerous
library functions. A large fraction of library coders are
working on library website user experience or other
patron-facing services.

Many of these coders are driven by a motivation
cited at least as far back as the 1998 version of Eric S.
Raymond’s landmark essay on open-source software,
“The Cathedral and the Bazaar”—“scratching your
own itch.”1 Librarians use their library’s website, cata-
log, or other web services frequently, and thus encoun-
ter user experience (UX) frustrations that directly
affect patrons. Rather than live with inadequate lay-
out or features, they created functionality their system
lacked by going outside that system.

Any web product that lets you add some JavaS-
cript—even if you can only add it to the <head> and
cannot edit the rest of the page—gives you an opportu-
nity to make this sort of tweak. Therefore, JavaScript
is the language of choice for most code in this chapter
(sometimes augmented and simplified with the won-
derful jQuery library).

Examples

The examples in this chapter fall into four categories:
UX improvements, presentation of information in new
contexts, LibGuides tweaks, and patron services out-
side of the website.

UX Improvements

Three librarians surveyed wanted to improve the
search experience. Amy Wharton wrote a jQuery
script to add autocompletion of database names to her
search box, allowing users to more quickly find (and
correctly spell) what they needed. Joel Marchesoni
found that CONTENTdm allowed for Boolean search
operators but only through hacking the URL; his ASP
script allowed users to enter Boolean queries through
conventional search and built the URLs accordingly.
Chris Fitzpatrick wrote a CoffeeScript that harvests
ISBNs from a page of search results from the Blacklight
discovery interface, grabs the corresponding cover
image from Google, and enriches the results page with
the images—all in a mere twelve lines.

Chris Fitzpatrick’s script
https://gist.github.com/cfitz/5265810

Blacklight
http://projectblacklight.org

Rachel Donohue wanted to simplify the pro-
cess of creating accessible content. As her employer,
the National Agricultural Library, a US government
agency, has a section 508 compliance mandate, so
accessibility is a must; however, Neatline, the Omeka
plug-in it uses to create time lines for digital exhib-
its, doesn’t generate compliant content. Her Ruby
script makes it fast and simple to provide an accessible
alternative.

Rachel Donohue’s script
https://gist.github.com/sheepeeh/10417852

Patron-Facing Services

Chapter 4

17

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts 

alatechsource.org 
A

p
ril 2015

Coding for Librarians: Learning by Example  Andromeda Yelton

Two librarians, Matthew Reidsma and Jason
Bengtson, wrote scripts to display the library’s hours,
including whether it is open right now. It’s intriguing
to look at these side by side because—while they’re
both JavaScript programs that display open/closed
status on a library website—they’re written very dif-
ferently. Bengston’s includes special-case handling for
holidays, while Reidsma’s covers only standard hours.
However, Reidsma’s encodes schedule information in
a significantly simpler format, which enables him to
write much more concise, readable code.

Matthew Reidsma’s script
https://github.com/gvsulib/Today-s-Hours/blob/master/
todayshours.js

Jason Bengtson’s script
https://github.com/techbrarian/openchecker/blob/master/
openchecker.js

This comparison illustrates how much of software
engineering is driven by brainstorming all the special
cases code might need to handle and making choices
as to which ones are worth handling in your context.
It also underscores the role that aesthetic sensibilities
play. There’s more than one right way to write pro-
grams—in a sense, anything that consistently produces
correct results is right. However, authors have differ-
ent stylistic preferences, and their intuitions about ele-
gance can enormously impact the final result.

Repurposing Information in New Contexts

Just as technical librarians’ jobs often break institu-
tional silos, technical librarians’ work can break con-
tent silos. One of the common frustrations of both
library software architecture and library user experi-
ence is that information is held in separate systems
even when it may be used in shared contexts; the three
scripts in this section take information from where it’s
found to where it’s needed.

Indeed, Michael Schofield phrased his JavaScript
in terms of breaking silos: “I basically wrote a small
API that [took] content that was previously silo’d on
whatever platform—LibGuides, WordPress, etc.—and
let it syndicate itself around our web presence with-
out having to be duplicated.” For instance, “if a patron
is looking for business resources and we happened to
have a scholarly speaker presenting about business,
the API would suggest the event to the user.”

Coral Sheldon-Hess also wrote something to syn-
dicate content: in her case, a social media aggregator
that pulled content from her library’s various social
media presences into a single home page display area.

While they could have used existing WordPress mod-
ules, RSScache offered better performance. She modi-
fied this tool to be consistent with her library’s brand-
ing. (Modifying existing code is often easier and less
buggy than writing your own from scratch, as well
as being a great starting point if writing your own
sounds daunting.) This new website feature “helped
us kind of institutionalize social media” by featur-
ing it prominently and unifying previously disparate
content. Seeing their new items pushing down older
entries also gave the social media team an incentive
to write more.

RSScache
www.rsscache.com

Jason Simon wanted to offer subject access to
research databases. He had alphabetical lists hard-
coded into HTML, but these were time-consuming and
error-prone to update; since any given database could
appear on multiple subject pages, changes had to be
made in each page for every update. Instead, he stored
information about which research databases served
which subjects in a separate database and wrote a PHP
script to pull information from this database and write
it automatically into their subject guides.

Subsequently, this project grew organically to
encompass new functions, ultimately becoming a
“larger back-end homemade ERMS which made it a lot
easier to manage subscriptions, statistics, pricing, hold-
ings, etc., for both databases and periodical subscrip-
tions.” This points to something that’s important to keep
in mind if you’re a new coder feeling overwhelmed by
the size of open-source projects you’ve looked at—they
didn’t start out big! In fact, they may not have been
started to tackle large problems at all. You can start by
writing something small, and along the way you’ll learn
how you might want to expand it and the skills you
need to do so. Conversely, if you know the thing you
need to write is large, break it down into the smallest
useful pieces and write them one at a time. Other peo-
ple’s software projects didn’t spring fully formed like
Athena, and yours needn’t either.

Springshare Customization

Four survey respondents made changes to their insti-
tution’s handling of Springshare products, particu-
larly LibGuides. These changes spanned the use cases
above—user experience changes and information
reuse—but three of them are grouped here to show
the variety of possibilities for augmenting this widely
deployed product line. The fourth will be the subject
of this chapter’s deep dive.

18

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s 
al

at
ec

hs
ou

rc
e.

or
g 

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example  Andromeda Yelton

Eric Phetteplace’s library, Chesapeake College (a
hybrid community college/public library), used a wide
range of Springshare products for recording library sta-
tistics. However, the input forms didn’t limit librarians’
choices to the recording schema used at Chesapeake; as
a result, invalid entries made it hard to analyze the data.
Phetteplace installed Tampermonkey on staff comput-
ers, which allows for installing additional userscripts—
snippets of JavaScript that function as browser plug-ins.
He then wrote a userscript that validated form entries
before submission, requiring staff to enter valid data.
This made it much easier to analyze the data, which
in turn helped the library make better choices about
how to staff their desks; for example, it could see that it
got more computer support questions early in the term
and more reference questions near finals and assign
desk coverage accordingly. It also helped the library to
communicate more effectively with other departments
about library usage and impact (see chapter 5).

Tampermonkey
http://tampermonkey.net

At Ohio University Libraries, staff had an array of
subject-specific LibGuides and wanted to make sure
students looking at the Course Reserves page knew
about this option. While the OPAC allowed the library
to insert links to LibGuides into those pages, doing so
manually would have been prohibitively time-consum-
ing at this school of over 20,000 students. Staff were
also concerned that placing links to LibGuides in line
with assigned course readings might irk faculty by
lessening their control over the content of the course
readings area. Instead, Carrie Preston wrote JavaScript
(building on the extremely useful jQuery library) that
automatically inserted a link to the LibGuides page,
including the name of the relevant subject category, in
a special block toward the top of the page. You can see
it in action on Ohio University’s ALICE catalog.

ALICE catalog
http://alice.library.ohiou.edu/search~S7?/
rcoms/rcoms/1%2C26%2C29%2CB/
frameset&FF=rcoms+4060&1%2C%2C2

Bohyun Kim had the inverse problem. Rather than
needing to add LibGuides to course resources, she
needed to add course resources to a LibGuide—in her
case, hundreds of e-textbooks that were hard to find in
the catalog. She had a student worker who was comfort-
able finding and organizing them but was not comfort-
able writing HTML, and she wanted to ensure that the
end product was compatible with the library’s custom

LibGuides styling without onerous proofreading on her
part. She wrote a web page in HTML and JavaScript
(again, taking advantage of jQuery) where her student
worker could enter metadata in a human-friendly for-
mat. The script then produced appropriately format-
ted HTML that the student could copy and paste into
the LibGuide. You can see the end result, with dozens
of e-textbooks alphabetized and properly formatted, on
the school’s Course E-Books web page. Kim also wrote
an ACRL TechConnect post that walks through the code.2
(There are only eleven lines of JavaScript!)

Course E-Books
http://LibGuides.medlib.fiu.edu/courseebooks

Bohyun Kim’s script
https://github.com/bohyunkim/examples/blob/
master/link.html

Services outside the Web

While most respondents were using code to affect
either metadata or the website—that is, strictly com-
putational objects—a few used code to improve ser-
vices in other domains.

Matt Weaver (whose author name preprocessing
script we saw in chapter 2) says, “We purchased a digi-
tal signage system from a reseller that didn’t really do
what we wanted it to do in the first place, and to get it
to do something close would have meant a workflow
would not have been manageable for one employee.”
The library wanted the system to display its meeting
room schedule, but it could not queue up information to
show at set times; staff had to manually change the sign
message throughout the day. Weaver’s Python script
allowed staff to deposit files with event data into a par-
ticular folder whenever it was convenient for them to
do so. It then pushed the information to the signage
software at the appropriate times. Ultimately, “the code
rescued a rather expensive, and unpopular project.”

In addition, Mike Drake (Deputy Director, Tulare
County Library, Tulare, CA) wrote a script to help
his children’s librarians give better, faster answers
to questions like “Do you have any princess books?”
In his words, “Some of the most popular books in
the children’s area are dispersed all over, in differ-
ent collections. And, most of them are checked out.
For example: Disney Princess can be in easy readers,
picture books, or juvenile fiction; and filed under sev-
eral different authors. Our OPAC will only allow us
to check the location and status of each title one at
a time; and it can be very tedious. I wrote a program
that will search the OPAC over the web and return
results only for titles that are available, in a single list,

19

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts 

alatechsource.org 
A

p
ril 2015

Coding for Librarians: Learning by Example  Andromeda Yelton

sorted by collection/author. This list can be printed by
the librarian, and then the hunt begins!”

While this can be read alongside the UX improve-
ments scripts earlier as another example of transcend-
ing the limitations of the OPAC, from a patron per-
spective it’s entirely different. The patrons probably
never know that their librarian wasn’t using standard
library software or that anyone wrote code; most of
them probably don’t know what code is. They just
know that the librarian was able to get them princess
books without delay.

Deep Dive: LibGuides Organizer

Jeremy Darrington (Princeton University Library)
wrote JavaScript to organize LibGuides to handle an
information overload problem. He had some topics for
which the library could offer lots of relevant resources,
and he wanted to make sure the students could access
them all. However, with so many boxes on a page, it
was hard for students to navigate the options or get an
overall sense of the holdings. He didn’t want to clut-
ter the page with too many tabs, either. Instead, he
wanted to provide a sidebar table of contents listing all
available sections and display only the currently active
section so that users didn’t feel overwhelmed. Users
then could click on the table of contents to selectively
reveal sections of interest.

You can see a screencast of the result of the page
organizing script on the Princeton website. The page
also provides clear, comprehensive instructions on
incorporating the script into your own site. (It’s based
on the older version of LibGuides; LibGuides 2.0
natively incorporates a similar side nav option.)

Page-organizing script screencast
http://LibGuides.princeton.edu/content
.php?pid=254621&sid=2824241

The code itself is available on the Princeton site.
It’s beautifully commented, making clear what each
section of the code is doing, as well as specifying the
CC BY-NC-SA license. Like a lot of JavaScript, it relies
on some understanding of HTML and CSS; if you’re
rusty on those, pull up a tutorial or reference for them
as well. Now, let’s dive in!

Jeremy Darrington’s script
https://thatandromeda.github.io/ltr/Chapter4.html

Lines 6–8 tell the browser that this function should
operate on the document, once it’s been fully loaded.

They then initialize two variables (that is, create them
and assign initial content). These are the lists where
we will be storing IDs and titles of the various con-
tent boxes (made clear by the excellent variable names
$boxID and $boxTitle). Right now they’re empty,
but we’ll add content over the next few lines.

Lines 10–18 get the titles of the boxes. The CSS
selector in line 10 specifies the header elements of
our content boxes. Line 11 gets the actual text of
the header; lines 12 and 13 test whether it matches
a given regular expression. (Regular expressions are
ways of specifying patterns of characters; this one
means “a number followed by a right parenthesis.”
This will match the beginning of each line in a list—
1), 2), and so on.) If the text and the regular expres-
sion match, the code strips off the matching part (the
1), 2), etc.) and adds the remaining text of the header
to our list. If there’s no match, it adds the entire text.
We now have the text of the entries in our table of con-
tents, with unimportant item numbers removed.

Was the regular expression strictly necessary? No;
we could have simply added the entire text. Had I been
writing this script, the first version would have done
just that—and then, after testing it on some LibGuides,
I’d have discovered that some table of contents entries
had 1) or 2) in front of them and some did not. I
would have decided that looked weird and added the
regular expression to normalize the formatting. This
is not necessarily how Darrington proceeded, but this
sort of iterative code-test-debug-code process under-
lies many programs.

Lines 20–21 get the ID attributes of those same
boxes and store them in the $boxID variable defined
earlier.

Lines 24–27 find the box we’re going to put the
table of contents in. This is a box that was set up dur-
ing LibGuides configuration, as detailed in the screen-
cast. The HTML IDs that we’ll use to find this box (via
the selector in line 24) are defined by the LibGuides
template. It starts out empty, but in lines 25–27 we
loop through $boxTitle and $boxID—the lists we
defined earlier, containing the IDs and titles of our
content divs—and add entries to our table of contents.
Each time through the loop, we add one line that has
a box title as text and that uses the box ID to construct
a link. At the end, we have a table of contents. The
remaining lines will make it work in the desired man-
ner, hiding and showing page content depending on
the currently active link.

Note that these lines assume that the first entry in
the $boxTitle list corresponds to the first entry in the
$boxID list —that is, they assume we harvested both
from the same place. This happens to be true because
the div[id^="wrapbox"] selector we use in lines
10 and 20 to find those boxes always returns them in
the same order, and (in those same lines) .each()
loops through them in the same order each time, and

20

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s 
al

at
ec

hs
ou

rc
e.

or
g 

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example  Andromeda Yelton

we can count on the lists $boxTitle and $boxID
storing them in the same order we added them. There-
fore, we can safely ignore order in this code. However,
there are programs where that isn’t the case (for exam-
ple, in Python, lists are stored in order, but dicts are
not; when you read a dict, you are not guaranteed to
see information in the same order that you wrote it).

Lines 31–51 check the URL the browser is cur-
rently pointed at (this is the location in line 31)
to see if it has an anchor at the end (like #foo; this
is the .hash part of line 31). We’ll do slightly dif-
ferent things in the scenario where it has an anchor
and the scenario where it doesn’t, using different code
blocks (respectively, lines 32–45 and lines 47–51).
The curly braces signal to the computer where these
code blocks begin and end; the indentation is optional
but makes it much easier for humans to keep track.

If there is an anchor in the URL, we’ll assume that
the user has just clicked on one of the table of contents
links (all of which have anchors) and hide or show
content accordingly, using the code in lines 32–39.
Line 32 gets the ID of the desired box from the anchor
link text (ignoring the # character at the beginning,
which is used by the browser to interpret the URL but
is not part of the HTML ID attribute). Lines 33–34 can
be ignored—they’re commented out and thus presum-
ably represent failed experiments from the process of
writing the code. Lines 35–39 loop through all the box
ID numbers on the page. When they get to our desired
$boxNum, they show the box, scroll the window to it,
and add highlighting to its line in the table of contents
to make it clear to the user what the currently active
content is. For all other IDs, we hide the div to avoid
cluttering up the interface. We’re now done processing
the scenario where there’s an anchor in the URL, and
the program will skip down to line 53.

If there isn’t an anchor in the URL, we’ll skip lines
32–39 and instead process lines 47–51. In this sce-
nario, we assume the user has just loaded the page
(using its base URL) and should be shown the first con-
tent box with the first line of the table of contents high-
lighted. Lines 47–49 hide all content divs except the
first (LibGuides displayed them all by default). Lines
50–51 highlight the first line in the table of contents.

To summarize, at this point we’ve done the
following:

•	 collected information from our page that we’ll
need to build the table of contents and connect its
entries to content areas on the page

•	 checked the URL to see what the user’s currently
selected content area is

•	 made sure the corresponding line in the table of con-
tents is highlighted so users know where they are

•	 made sure the corresponding content block is
shown and the rest are hidden to keep the screen
from being cluttered with irrelevant content

All we have to do now is ensure that, if the user
selects a new line in the table of contents, the high-
lighting shifts to that line, the old content box is hid-
den, and the new one is revealed; we accomplish this
in lines 53–69. Line 53 specifies that this code block
is a function that is triggered whenever the user clicks
an element whose class is boxNav. (This is the class
name that Darrington applied to his table of contents
entries in line 26.) In lines 54–55, we find the cur-
rently highlighted entry and remove the current-
Nav class (thereby removing the highlight styling).
Lines 56–57 find this—a special JavaScript keyword
that here represents the element the user clicked—and
add the styling that indicates it’s the currently active
nav entry. Lines 58–69 then loop through the con-
tent areas in the LibGuide, showing (and scrolling to
the top) the one that corresponds to the active table of
contents entry and hiding the remainder.

Scripts in This Chapter

Chris Fitzpatrick’s script
https://gist.github.com/cfitz/5265810

Rachel Donohue’s script
https://gist.github.com/sheepeeh/10417852

Matthew Reidsma’s script
https://github.com/gvsulib/Today-s-Hours/blob/master/
todayshours.js

Jason Bengtson’s script
https://github.com/techbrarian/openchecker/blob/
master/openchecker.js

Bohyun Kim’s script
https://github.com/bohyunkim/examples/blob/master/
link.html

Jeremy Darrington’s script
https://thatandromeda.github.io/ltr/Chapter4.html

Matthew Reidsma and Kyle Felker’s 360Link
Reset
https://github.com/gvsulib/360Link-Reset

Matthew Reidsma’s snippets on GitHub
https://gist.github.com/mreidsma

Grand Valley State University Libraries scripts
on GitHub
https://github.com/gvsulib

Matthew Reidsma’s repositories on GitHub
https://github.com/mreidsma

21

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts 

alatechsource.org 
A

p
ril 2015

Coding for Librarians: Learning by Example  Andromeda Yelton

And now we’re done! When users load the Lib-
Guide, it will show only the first (or active) content
area, with the table of contents highlighted accord-
ingly; when they click on the table of contents, the
corresponding content will be displayed and the rest
hidden. Now Darrington can add quite a lot of content
to a LibGuide without overwhelming or confusing the
user, as long as he organizes it into logical chunks.

What are some key takeaways from the code?
First, clear comments are a great service. Because this
code is organized into logical sections and each has an
explanatory comment, it’s clear what each section of
the code is doing even if you don’t speak JavaScript.
This also makes it much easier to figure out where to
look if you’d like to write similar code or change one
aspect while keeping the remaining functionality.

Several lines of this code (e.g., 10, 20, 53) also
illustrate that JavaScript is often very tightly bound to
the HTML of the page it operates on. Changing a sin-
gle class name or displaying content inside a different
element breaks many JavaScripts, as they can no lon-
ger find the content they were meant to operate on.
On the other hand, if you can control the HTML of a
page, or at least have high confidence it won’t change,
JavaScript gives you a great deal of power. Once you
know where to find the information you need (using
CSS selectors), you can hide, show, move, and refor-
mat it on the fly. By writing a custom stylesheet and
using JavaScript to add or remove classes from that
stylesheet as needed, you can (re)define a page’s lay-
out, appearance, and usability.

Better yet, you can do this even if you’re working
with a product that doesn’t let you edit the <body>
of the HTML but does let you insert CSS and Java
Script into the <head>. If you read the HTML thor-
oughly, you can generally construct CSS selectors
that uniquely identify parts of the page you’d like to
change; you can then write JavaScript to target those
parts. Using this technique, Matthew Reidsma and
Kyle Felker entirely redesigned Grand Valley State
University’s 360Link implementation. This let them
not only improve design but also address concerns that
had arisen during usability testing. For this and other

examples of improving user experience through JavaS-
cript, explore the GVSU Libraries’ and Matthew Reids-
ma’s personal GitHub repositories.

Matthew Reidsma and Kyle Felker’s
360Link Reset
https://github.com/gvsulib/360Link-Reset

Want to modify Darrington’s program for use
locally and practice your JavaScript (and jQuery and
CSS) skills while you’re at it? Here are some things you
might try:

•	 Lines 32–39 assume that any anchor in the URL
actually corresponds to an element on the page;
they don’t defend against the possibility that a
user has edited the URL. What happens if the URL
has an invalid anchor? If the outcome is bad, can
you check for validity before deciding whether to
run the code?

•	 Change the appearance of the highlighting applied
to table of contents entries. This actually isn’t a
JavaScript question at all; the styling comes from
the CSS rules defined for the currentNav class
(in a separate file). Merely changing the CSS,
without touching the JavaScript, can give you
very different results.

•	 Write something inspired by this script that works
with LibGuides 2.0.

Notes
1.	 Eric S. Raymond, “The Cathedral and the Bazaar,”

First Monday 3, no. 3 (March 2, 1998), http://first
monday.org/article/view/578/499; Eric S. Raymond,
The Cathedral and the Bazaar website, February 18,
2010, www.catb.org/~esr/writings/cathedral-bazaar.

2.	 Bohyun Kim, “Playing with JavaScript and
JQuery—The Ebook Link HTML String Generator
and the EZproxy Bookmarklet Generator,” Tech-
Connect Blog, April 8, 2013, http://acrl.ala.org/
techconnect/?p=3098.

