
13

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

In chapter 2, we saw scripts that helped librarians and
archivists who were limited by issues of data qual-
ity and data portability. In this chapter, we’ll take

one step closer to front-end users by looking at scripts
that aid reporting. These scripts are all about organiz-
ing and querying the available data and presenting it
to library staff—some of them nontechnical—in ways
that aid decision making. They analyze logs to high-
light actionable information, simplify workflows, and
expand the capabilities of the ILS.

Examples

Two survey respondents wrote scripts to analyze logs.
Stuart Yeates found that his web server was under
attack from bots that ignored his robots.txt file; his
bash script (figure 3.1) picked out the relevant lines
from his logs and sorted them. This let him find the
major traffic sources (i.e., bots) and defend against
them, improving server performance. Robin Camille
Davis wrote a Python script to analyze EZproxy logs.
EZproxy logs an enormous amount of data, which can
make it hard to find what you’re looking for; her script
let her zero in on usage patterns by different patron
categories (e.g., students vs. faculty) and graph how
usage changed throughout the year.

As Davis noted, “We can get pretty good usage
stats from the individual database vendors, but with
monthly logs like these, why not analyze them your-
self? You could do this in Excel, but Python is much
more flexible, and much faster, and also, I’ve already
written the script for you.”1 In a blog post, she dis-
cusses how and why she wrote the script, changes
you may need to make to run it on your own logs,
and other questions you could answer by modifying
the script.2 (The need to make changes to get others’

scripts working in your own environment is recurrent,
and we’ll tackle it in more depth later this chapter.)

Robin Camille Davis’s script
https://github.com/robincamille/ezproxy-analysis/blob/
master/ezp-analysis.py

Three survey respondents wrote scripts that gener-
ate reports as part of improving various library work-
flows. We discussed Annie Glerum’s quality control
script in the last chapter. Matthew S. Collins wrote a
Python script to “check a list of ISBNs from a publisher
catalog against our holdings to see what we already
have or need to order,” saving time in the acquisi-
tions workflow. Joe Montibello helped his preserva-
tion librarians, who were dissatisfied that they didn’t
have good metrics on which parts of their collection
had been crawled by LOCKSS. He came up with an
algorithm to estimate when crawling would be com-
plete. Like many survey respondents, he had his pro-
gram write its output to a spreadsheet so that it would
be easy for his nonprogramming colleagues to inte-
grate into their existing workflows. By automatically
generating this spreadsheet as a shared Google doc,
he also saved his own time in reporting out, since his
coworkers could check the spreadsheet whenever they
were curious rather than needing to ask him.

tail -100000 /var/log/httpd/access-
nzetc.log |grep facet |awk ‘{print
$1}’|sort | uniq -c | sort -n

Figure 3.1
The entirety of Yeates’s bash script

Reporting

Chapter 3

14

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

Joe Montibello’s script
https://github.com/joemontibello/update-lockss

Finally, three respondents wrote scripts to fill gaps
in ILS reporting capacity. Sam Kome simplified weed-
ing by writing a script that “identified print volumes
that met a set of rules for de-accession including a rule
that [they] be held at more than one of 50+ libraries
in our lending network.” Cindy Harper found her seri-
als module “cumbersome,” so she wrote her own script
that lists what’s been sent to the bindery and what
needs to be claimed. The third reporting script, below,
is the subject of this chapter’s deep dive.

Deep Dive: Automated ILS Reporting

Esther Verreau wrote an array of scripts (available
on GitHub) that “pull stats from the Sierra ILS and
report it to the appropriate destinations, Shoutbomb,
Civic Technologies Community Connect and Novelist
Select.” Some of these had originally been written in
Millennium’s scripting language, but they were “error
prone and difficult to maintain” and became obsolete
after an upgrade. The new Python scripts run essen-
tially without human intervention.

Esther Verreau’s scripts
https://github.com/everreau/sierra-scripts

These scripts cover an array of uses. One generates
RSS feeds of new items (compare with LibALERTS,
chapter 2). Another generates an internal report of
how many patrons had maxed out their holds; this
allowed the library to use real data to decide whether
it needed to change its holds policy. Indeed, a striking
fact about Verreau’s scripts is how many of them are
experimental—written not to provide a new service,
but to let the library gather data on whether a new
service or policy would be helpful. Once people are
moderately fluent at writing code, one-time-use scripts
become reasonable to write. This lets people ask ques-
tions it wasn’t previously feasible to ask and answer
them with hard data.

Verreau’s novelist.py script exports metadata
from the library’s entire collection, writes it to a file,
FTPs that file to Novelist Select, and notifies someone
that it happened. Let’s walk through the script.

The latest version of the novelist.py#script
https://thatandromeda.github.io/ltr/Chapter3.html

The comments in Lines 1–14 describe the script’s
function and clearly indicate what future users will need
to change in order to run the script in their own envi-
ronments. These sorts of explanatory comments are best
practice because future users don’t necessarily know
what you were thinking and don’t want to spend time
puzzling through the code to find out. (This includes
you, six months from now, when you are guaranteed to
have forgotten what you were thinking today.)

Lines 17–25 import other Python functionality the
script will rely on. These include interoperating with
databases (psycopg2), the operating system (os),
and e-mail (smtplib).

Lines 27–31 define a function, strify, that the
program will use later when writing individual lines
of metadata to the output file. The notable thing here
is error handling—if obj == None: recognizes that
there may be some empty lines returned by the data-
base query and ensures that they don’t result in any-
thing being written to the output file.

Lines 33–41 also define a utility function, put_file,
which FTPs a file to a given directory. Like strify,
it shows error handling: if it encounters an exception
while trying to FTP the file, it prints the exception to
the console rather than letting the program crash. This
is a great early step in writing programs because it lets
you explore how they might fail. (Again, some degree
of failure is the normal case for programs; understand-
ing and handling failures is often more achievable than
avoiding them entirely.) More elegant revisions would
identify the specific types of exceptions that the pro-
gram encounters in practice and write thoughtful han-
dling of each. Depending on the nature of the problem,
good options might be logging the error, retrying the
file transfer in case the error was temporary, or remov-
ing broken lines from the file and attempting to send
the remainder while maintaining a record of the broken
lines for subsequent human intervention.

Lines 43–59 construct the database query in raw
SQL, pulling bar codes, titles, and unique identifiers
from the entire collection. While the rest of the program
could be used in any context, these lines rely on the spe-
cific ILS being used. Indeed, Verreau would write them
differently today because III’s new API would allow her
to dramatically simplify this part of the code.

For a sense of how much easier and more read-
able an API, using the same programming language as
its surrounding code, can be, have a look at the docu-
mentation for credit card processor Stripe. The right
sidebar shows how to charge a user’s credit card. On
Stripe’s end, this information all lives in a database that
can be queried in SQL, but the API lets you use simple
and Pythonic statements like stripe.Charge.cre-
ate() instead of constructing the SQL query. Indeed,
you need not know how the database is structured at
all, and your code does not have to change if Stripe
decides to change its database schema.

15

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

Stripe API documentation:
Creating a new charge
https://stripe.com/docs/api#create_charge

Lines 61–66 connect to the database and provide a
cursor we’ll be able to use to examine the results. This
cursor will let us step through the results line by line.

Lines 68–78 remove outdated files from our Novel-
ist directory and create today’s filename.

Lines 80–81 connect to the database and fetch the
results.

Lines 83–92 open our new file and write a title
line. The loop (indicated by for r in rows:) then
writes one line per record from the database, each on
a separate line (\n is the newline character). Once all
records have been written, it closes the file.

Lines 94–104 attempt to log in to the FTP server
and transfer the file. The message variable created
here is the body of the e-mail we will send in lines
106–114.

This program demonstrates several best practices:
comments, error handling, and descriptive variable and
function names. The functions strify and put_file
also demonstrate the usefulness of breaking logically
coherent units of functionality into actual functions.
By keeping them separate from the main body of the
program, we make the overall logic more readable; the
program reads like an outline, and we can dig into the
specifics only as needed. The program is also easier to
debug when you can isolate functionality and zero in on
the parts that may need to be fixed. In a larger program,
these functions could also be reused. For instance, if we
needed to FTP our output file to several servers instead
of just one, we don’t need to rewrite all that code—we
can just call put_file again. And if we found that put_
file was so useful that we needed to use it in multiple
programs, we could grow it into a library that could
be imported by other programs, just like this program
imports psycopg2, os, and smtplib.

Want to modify this program for use locally, and
practice your Python skills while you’re at it? Here are
some things you might try:

• Replace the SQL with a query suitable to your ILS
(ideally using an API).

• Have the program import all the local parameters
(like DB_NAME) from a separate file, and make sure
you keep that file out of GitHub so you don’t inad-
vertently share sensitive data. (For instance, name
it parameters.py, and add parameters.py
to your .gitignore.) Alternately, have it har-
vest this information from environment variables
(and add some error checking so that the program
will exit if it doesn’t have all the data it needs).

• Find out what kind of exceptions might actually
be thrown by the try/except clauses, and han-
dle them specifically.

• Add error handling in case the e-mail-sending fails.
• Think through what might happen if NOVELIST_
DIR contains files you didn’t expect (e.g., if it’s the
directory where text files for some other project
are being stored) and what you can do about those
risks.

• Identify some other case where you need to har-
vest data from your ILS and e-mail or FTP the
results. Modify this script to do that instead.

Scripts in This Chapter

Robin Camille Davis’s script
https://github.com/robincamille/ezproxy-analysis/blob/
master/ezp-analysis.py

Joe Montibello’s script
https://github.com/joemontibello/update-lockss

Esther Verreau’s scripts
https://github.com/everreau/sierra-scripts

Notes
1. Robin Camille Davis, “Analyzing EZproxy Logs with

Python,” Emerging Tech in Libraries (blog), April 22,
2014, http://emerging.commons.gc.cuny.edu/
2014/04/analyzing-ezproxy-logs-python.

2. Ibid.

