
9

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

One of the most common use cases for coding
in libraries is data processing. Whether it’s
import/export, quality control, combining data

from different sources, or adapting externally pro-
vided records to local purposes, data tasks are ubiq-
uitous in library technical services. Many of them are
quite repetitive and, as such, lend themselves well to
scripting. In addition, computers are often faster and
more accurate than humans at repetitive tasks. There-
fore, the time spent in developing data processing
scripts can pay off manyfold in increased efficiency,
freeing librarians to do more creative, sophisticated
tasks that require human insight.

In this chapter, I’ll provide an overview of eight
scripts that simplify various data processing tasks and
do a deep dive into a ninth. Their use cases include
metadata quality control, import/export workflows,
bulk downloading, and data migration.

It’s notable that these nine scripts are in seven dif-
ferent programming languages (bash, Python, VBA for
Excel, Perl, Ruby, XSLT, PHP). Beginning program-
mers often want to know the best language to learn,
and there truly isn’t one. While some languages may
be easier or harder for a given student, and more or
less suited for a particular use case, they all incorpo-
rate the same fundamental programming concepts,
and all of them open a lot of doors.

Examples

Facing a need to export data from DSpace, nina de
jesus wrote a bash script to do it. This script exports
metadata from every handle in a series and dumps it
to a CSV file for later processing. Like many program-
mers, de jesus learned how bash worked in the course

of getting this script to work. This made it slow going
at first, but she expects it to pay off handsomely over
time: “For all that this tiny script took me a long time
to write (maybe three or four days to get it working
properly), it saved me a lot of tedious hours of slowly
(manually) going through database tables and spread-
sheets to get the data I needed. And now I can use the
script whenever I need to get this kind of data out of
DSpace again (which I’m sure will happen).”

nina de jesus’s script
http://satifice.com/2014/10/22/exporting-the-
metadata-of-a-range-of-handles-in-dspace

Hillel Arnold also needed to export metadata:
in his case, EAD files from ArchivesSpace. His short
Python script finds all the resource IDs that match a
given criterion, gets their EAD, and writes it to a speci-
fied destination.

Hillel Arnold’s script
https://gist.github.com/
helrond/1ef5b5bd47b47bd52f02

Becky Yoose also saved time by automating a
tedious workflow. Her library had a trigger file, in
Excel format, of books to be acquired under a patron-
driven acquisition policy. The library needed to
extract MARC records from the database using local
control numbers in the file, edit them for consistency
with local cataloging rules, and insert codes to make
the ILS’s purchasing module automatically create an

Data Workflows

Chapter 2

10

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

order request. By hand, this workflow took five to ten
minutes per week per record, or almost one to two
hours per week of cataloger time; the script reduced
processing to two minutes total, for a net savings of
one to two weeks per year of cataloger time. Addition-
ally, as she notes, “Each time a human has to touch the
record, it’s a possible fail point” because of the risk of
misspellings and other oversights; machine processing
improves accuracy while saving time.

A version of this script (edited for use in the LITA/
ALCTS Library Code Year Interest Group Python pre-
conference at ALA Annual 2013) is available online.
The README at that link explicitly permits library
reuse and adaptation.

Becky Yoose’s script (edited)
https://github.com/LibraryCodeYearIG/MARC-record-edit

Tricia Lampron had a text file with bar codes cor-
responding to files that needed to be downloaded. By
hand, this meant she had to “enter in the link, right click
to download the file, and then . . . change the file name
once downloaded” for up to 190 files—a tremendously
tedious process. Her Python script reads the text file,
constructs the corresponding URL, downloads the file,
and creates an appropriately named XML file locally.

Joy Nelson and Ruth Szpunar both faced meta-
data cleanup tasks. Szpunar cleaned up and organized
metadata from a digitization project using VBA for
Excel. Nelson works for an ILS support vendor whose
customers often want to move data from one MARC
tag to another during ILS migrations; she wrote a Perl
script to handle this task. Nelson’s use case in partic-
ular underscores how tedious, repetitive tasks can be
great scripting candidates if you can specify a clear
rule for them; as long as you can specify the exact field
and subfield that you want data to move from and to,
you can write this program with only a handful of lines
of code, and it will execute accurately over thousands
of records in (almost) no time.

Misty De Meo faced a more complex migration
problem. She inherited a controlled vocabulary, “but
it became clear that there were a large number of defi-
ciencies in it: inconsistencies, missing terms, duplicate
terms, incorrectly-matched relationships, and so on.”
It’s difficult to have a computer fix this kind of prob-
lem because there are so many ways the data can be
wrong, and making it right could require human judg-
ment calls. However, she was able to write a Ruby
script that automatically fixed the simpler errors and
flagged others for subsequent human review. Along
the way she gained better insight into her data set:
“It really helped me understand why the metadata
had problems, and helped me reason about what was
probably intention vs what was probably an accident.

Many patterns that weren’t at all obvious when read-
ing metadata by eye instantly became clear once it was
being processed by software.”

These kinds of data quality problems are common
in library coding and can sometimes be so pervasive or
frustrating as to make it infeasible to build software on
top of the data. However, exposing problems through
attempts to write code can suggest opportunities for
improvement. Clarifying local cataloging rules, adding
input validation (see Eric Phetteplace’s script in chap-
ter 4), or writing scripts that run regularly to detect
common problems can all improve data quality, for
example.

Annie Glerum also had metadata quality prob-
lems: in her case, inaccurate vendor records. Her XSLT
stylesheet “identifies records needing location code
edits for the catalog’s holdings record, corrections
to the MARC coding, edits to bring the record to full
level, or human review for special formats and sets.”
It outputs its report as an Excel spreadsheet, which fits
well into subsequent workflows.

Deep Dive: LibALERTS

Patrons at Westlake Porter Public Library (Westlake,
OH) wanted to be notified by text message when the
library got new books by their favorite authors.1 While
the library’s OPAC had similar functionality, it didn’t
let patrons refine their searches enough to be useful
and had been turned off. The library’s Drupal web-
site, however, provided many of the building blocks
needed: SMS integration, a module to create Drupal
nodes from MARC imports, and a module allowing
users to subscribe to terms in the site taxonomy. Matt
Weaver—“a development team of 1 [with] a budget
of 0”2—was able to build a prototype alerts service by
combining these modules.

However, he quickly found that he had to address
data quality issues before the service could be offered
to patrons. Publisher-provided MARC records did not
consistently handle middle initials and sometimes mis-
spelled author names, meaning that a single author
could be represented by a variety of terms. All these
terms needed to be combined in order to offer patrons
a single term they could subscribe to.3 This single term
is an element of his site’s taxonomy, which in turn
is generated from MARC records in the Drupal site
(which are distinct from MARC records in the catalog).
Therefore, Weaver needed to compare his publisher-
provided MARC records with his catalog versions and
create records with canonical names that he could feed
into his Drupal site.

In Weaver’s marcreupload repository, the marc_
upload_page script provides a front end for sub-
mitting MARC records, including a Levenshtein dis-
tance function that automatically suggests several

11

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

close-match spelling options for author names. Records
submitted through this page are processed by the
authorchange script, which we examine here. Fol-
low along at this link:

Matt Weaver’s authorchange script
https://thatandromeda.github.io/ltr/Chapter2.html

Line 1 simply tells the computer that this is a PHP
script. Line 2 includes the PHP library for processing
MARC records, which we’ll need later.

Lines 3–14 harvest data from the MARC record
submitted through the form on marc_upload_page
and store it as variables for later use. An important
variable here is $closest; this is an array of the
author names from our catalog that are the closest
match to the author names submitted in the form.

Lines 15–19 write HTML; this is the web interface
presented to the human using the script, and it’s how
we’ll display feedback. (Keep in mind that this script
also has a machine audience: the Drupal site that will
be consuming the MARC records it generates.) All sub-
sequent lines that begin with echo are also writing
HTML, which provides feedback to the user, and will
be skipped in this read-through.

Line 21 initializes the $arraypos variable; this
is how we’ll keep track of how many times we’ve iter-
ated through the upcoming loop.

In line 22, we begin the loop that will take up
the remainder of the program. Broadly speaking, what
we’ll do in this loop is look through each submitted
author name, compare it to the corresponding closest-
match name, and create records for the Drupal site if it
seems correct to do so.

In line 23 we increase the $arraypos counter by
one (the ++ syntax, meaning “increase this number by
1,” is common to many languages). In this loop, we’re
processing several records. When we generate a new
MARC record for the first author name, we want to
make sure we’re comparing it against the first name
in the closest-match array and using MARC field data
from the first submitted MARC record (and so on for
the second and subsequent records). Keeping track of
this counter lets us be sure to look in the right place for
all our information.

In line 28, we check to see if the author name
we’re currently examining is the same as the corre-
sponding closest-match name. If it is, we’ll write a
MARC record; if it’s not, we’ll skip processing—this is
a case that requires human judgment.

Assuming the names match, in line 32, we create
an empty MARC record, which we’ll call $marc. Line
33 sets its leaders to be the same as those in the sub-
mitted record. Lines 34–37 create a new MARC 008
field using the same information as in the 008 field

of the submitted MARC record. (Note that we use the
$arraypos variable to select the first, second, etc.,
from the array of submitted 008 fields, as appropri-
ate.) We then append that field to $marc.

Lines 38–60 proceed in the same manner, copy-
ing data from the submitted MARC record to the new
one being created. Line 44 varies this slightly, using
the author name from the closest-match array (which,
you recall from line 28, exactly matches the submit-
ted author name).

In line 63, we check to see if we’ve successfully
generated a MARC record. If so, we tell the user
we’ve written a file for it; if not, we inform the user
accordingly.

Lines 66–69 actually write the MARC record for
our Drupal site to our output file.

Line 72 connects back to the if condition that
we opened in line 28. All the lines since then have
been handling the case where the author name and
the closest-match name are the same. The else in
this line switches us to the alternative case. If we don’t
have matching names, we can’t generate an authorita-
tive record, so we simply inform the user of this (line
74) and move on. The remaining lines close all our
unclosed code blocks to complete the program.

Weaver’s script underscores several issues of soft-
ware development process that numerous respon-
dents commented on. One is the importance of look-
ing for existing code rather than building from scratch.
Although Weaver did write several scripts in the pro-
cess of getting LibALERTS to work, the vast majority
of the service resides in Drupal modules already writ-
ten by others; his code patches them together. Many
people, with development budgets similar to Weaver’s,
will find that this is much more achievable than writ-
ing things from scratch. It’s often better practice, too,
since existing modules benefit from the development
expertise and user testing of large communities and
get quicker and more thorough bug fixes than in-house
code produced with limited labor.

Another issue is iteration. Very few programs work
right the first time. Even if they’re bug-free (which is
rare), developers usually can’t envision exactly what
users might need to do or all the special cases the code
might end up needing to address. In this case, Weaver
discovered the data quality issues by writing the pro-
totype version of his code and seeing where it encoun-
tered problems. The authorchange script is part of
how he solved those problems.

This shouldn’t be viewed as a failure of the first
script, by the way. Fred Brooks, in his classic of soft-
ware project management, The Mythical Man-Month,
said you should expect at least half your time to be
spent on testing and debugging—and the more com-
ponents you find yourself integrating, the longer the
overall time to completion.4 Planning for iteration is
simply responsible software practice.

12

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

So how would you iterate this program from here?
Things to try include these:

• As a Pythonista with limited PHP skills, I had trou-
ble reading this program and found myself refor-
matting it in order to analyze it. In particular, I
reflexively applied semantic whitespace—indent-
ing the contents of for loops and if conditions to
make the code blocks stand out more clearly on
the page. How could you reorganize and comment
the marc_upload_page script to make it easier
to read?

• Determine: is copying the leaders from the exist-
ing record valid? If we’ve changed author names
or failed to preserve any MARC fields between
marc_upload_page and authorchange, the
leaders no longer accurately represent the length
of the file. The setLeader function from PHP’s
MARC library explicitly does not perform any vali-
dation, so we can easily end up with invalid lead-
ers. Figuring out if this is a problem in our case
requires analyzing marc_upload_page and con-
sidering the input data (which may vary in differ-
ent contexts, depending on local cataloging prac-
tices). If we can’t safely copy the leaders, what
should we do instead? (Alternatively, we could
skip the entire analysis if we simply planned to
generate leaders rather than copy them. Consult
PHP’s MARC module source code and documenta-
tion to see if it has that functionality.)

Record.php, containing the setLeader
function, from PHP’s MARC library
https://github.com/pear/File_MARC/blob/master/File/
MARC/Record.php

• The marc_upload_page and authorchange
functions handle authors in the 100 field, but

don’t handle additional authors from the 700
field. However, patrons who are interested in new
works by particular authors may want to see their
coauthored works as well. How can we add sup-
port for this?

Scripts in This Chapter

nina de jesus’s script
http://satifice.com/2014/10/22/exporting-the-
metadata-of-a-range-of-handles-in-dspace

Hillel Arnold’s script
https://gist.github.com/
helrond/1ef5b5bd47b47bd52f02

Becky Yoose’s script (edited)
https://github.com/LibraryCodeYearIG/MARC-record-
edit

Matt Weaver’s authorchange script
https://thatandromeda.github.io/ltr/Chapter2.html

Notes
1. See Westlake Porter Public Library, LibALERTS web-

page, accessed December 15, 2014, www.westlake
library.org/libalerts.

2. Matt Weaver, “LibALERTS: An Author-Level Subscrip-
tion System,” Code4Lib Journal, no. 18 (October 3,
2012), http://journal.code4lib.org/articles/7363.

3. See Weaver’s Code4Lib article (cited in note 2) for
sample code handling this issue.

4. Frederick P. Brooks Jr., “The Mythical Man-Month,”
in The Mythical Man-Month: Essays on Software En-
gineering, Anniversary Edition, 20, (Boston: Addison-
Wesley, 1995).

