
28

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

Abstract

Chapter 5 of Library Technology Reports (vol. 49, no.
8), “Streamlining Information Services Using Chatbots,”
explores options in functionality, with advice on the cod-
ing required and the benefits. Chatbot interfaces take a
wide range of forms, from simple text boxes to talking
characters that pass questions to other resources.

Having discussed the nuts and bolts of coding in
AIML, it’s appropriate to take a step back and
think about the way in which the chatbot will

integrate into existing library services and resources.
The first decision to be made is exactly you want the
chatbot to do. The technology behind the chatbot can
be expanded from a simple beginning, but it’s helpful
to think of bots as having at least three tiers of func-
tionality and to decide at the outset to which of these
tiers you aspire.

The first functional tier is a bot programmed to
respond to a specific and limited group of questions
with a predetermined set of responses. Think of this
as a virtual FAQ resource. The creator considers the
questions most likely to be asked and programs the
full responses into the chatbot’s code. This is a good
place for a library bot to start, and indeed Emma’s first
iteration was designed to respond to fifteen questions
about the Mentor Library and its services.

You are likely to already have a FAQ or “How do
I” section on your website or in a library brochure
that will provide you with an initial set of questions
and responses. Using these questions, create a set of
categories and their associated template responses.
It’s a good idea to think of simple category patterns
(like “hours,” “fines,” or “location”) rather than using
full questions at this point. For these simple patterns,

compose fully formed template responses. Your next
step will be to consider all the possible ways you can
pose questions about each category pattern. Code
these more complete question patterns as efficiently
as possible using wildcards, and refer each back to the
appropriate basic pattern categories using <srai>
templates. You may wish to work in separate code
files for each basic pattern to help you keep track of
your questions and responses. Table 5.1 provides an
example of this process.

We talked about the efficiency of <srai> tags as
a means to shorten initial coding in chapter 3. But you
can also think of <srai> as a way to limit the number
of changes you will need to make later if the responses
to your questions were to change. In the example in
table 5.1, a change in library hours would necessitate
only a single change in one line of code to update the
responses to all the associated questions.

This is really the extent of the virtual FAQ tier of
chatbot. As interactive and informative as many com-
mercial chatbots are, this is really the core of what
they are all about: giving information about a particu-
lar institution’s products and services in response to
inquiries about those products and services.

To expand upon the virtual FAQ tier, one need
only access additional prepared resources that are
already available on your website (or others). This is
as simple as embedding HTML coded hyperlinks into
your template responses. For those unfamiliar with
HTML, here’s a quick example of the process.

Let’s say you want to give the location of your
library in a template response, but also provide a link
to a map. Compose the template response, then select
the text you wish to link to another website. Surround
this text with <a> tags. Complete the infor-
mation in the initial tag with the URL of the target

Tiers of Functionality

Chapter 5

29

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

website like this: .
You may also wish to have the target website open in
a new window. In this case add to the initial <a> tag
the following text: target="_blank" (see table 5.2).

The same kind of linking can be done with any

existing resources from your website to give access to
full text of procedural, policy, or instructional docu-
mentation that expands upon the information pro-
vided in your answer template.

The highest tier of functionality, and one which

Basic FAQ question What are the library’s hours?

First AIML file (basic pattern) <?xml version="1.0" encoding="UTF-8">
<aiml version="1.0">

<category>
<pattern>LIBHOURS</pattern>
<template>We are open from nine to five, Monday through Friday.
</template>
</category>

</aiml>

expanded question set and
associated wildcard formats

What are the library’s hours?
What are library hours?
What are the library hours on saturday?
When is the library open?
Are you open on sunday?

* LIBRARYs HoURs
* LIBRARY HoURs
* LIBRARY HoURs *
* opeN
* opeN *

Note that we didn’t use the term hours alone with wildcards at this point in case we end
up with questions using the word hours that are not referring to the library’s hours of
opening. An example would be “How many hours before I can pick up my hold?”

Resulting AIML file <?xml version="1.0" encoding="UTF-8">
<aiml version="1.0">

<category>
<pattern>LIBHOURS</pattern>
<template>We are open from nine to five, Monday through Friday.
</template>
</category>

<category>
<pattern>* LIBRARYS HOURS</pattern>
<template><srai> LIBHOURS </srai></template>
</category>

<category>
<pattern>* LIBRARY HOURS</pattern>
<template><srai> LIBHOURS </srai></template>
</category>

<category>
<pattern>* LIBRARY HOURS *</pattern>
<template><srai> LIBHOURS </srai></template>
</category>

<category>
<pattern>* OPEN</pattern>
<template><srai> LIBHOURS </srai></template>
</category>

<category>
<pattern>* OPEN *</pattern>
<template><srai> LIBHOURS </srai></template>
</category>

</aiml>

Table 5.1
example of the process of coding a basic library question.

30

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

commercial bots are not usually interested in achiev-
ing, is the ability of a bot to pass queries to other
resources. This highlights the difference we addressed
earlier in the overall goals of our library bots as com-
pared to those of most commercial enterprises. Our
goal is not to simply publicize our services, products,
and resources (though we definitely do want to do
this). Library chatbots also seek to provide our users
access to the answers to their questions from what-
ever resource is most efficient and best able to provide
these answers. We can achieve this goal by passing
information queries directly to our library catalogs, to
magazine and journal article index databases, to dic-
tionary or encyclopedia websites, and to a plethora of
other resources.

This tier of functionality requires a fuller articula-
tion of the coding between the HTML page in which
the bot is displayed and the AIML code that informs its
interaction with users. To understand this, we’ll first
need to look at how the bot is placed into a web page.

Text-Only Interface

It is perhaps best to start a discussion of embedding
your chatbot in a web page by providing a template
for creating a basic text-only interface. Such an inter-
face is composed of a form to submit the user’s ques-
tion. In Pandorabots, the form must contain the string

!CUSTID! to identify the bot that is posing the ques-
tion. This string should appear on a line by itself. Your
bot’s response will be called by the string !OUTPUT!.
This string need not appear by itself, so you can use
spacing and punctuation to identify the response for
users.

<html>
<body onLoad="document.form.input.

focus();">
Text Only Chatbot
<form method="POST" name="form">
!CUSTID!
You ask: <input type="TEXT"

autocomplete="off" name="input"
size="30">

</form>
Reply: !OUTPUT!
</body>
</html>

Talking Avatar

While it is true that the above text-only interface
encompasses the functional entirety of the chatbot
concept, creating a more visually (and auditorially)
interesting (and entertaining) interface is both simple
and desirable.

Basic FAQ question Where is the library?

First AIML file <?xml version="1.0" encoding=”UTF-8”>
<aiml version="1.0">

<category>
<pattern>LIBLOC</pattern>
<template>The library is located at 60 S. Main St., Hometown,
Ohio 44312. Our phone number is 330-643-9157. You may also wish
to view a map of our location.</template>
</category>

</aiml>

First AIML file with HTML link <?xml version="1.0" encoding="UTF-8">
<aiml version="1.0">

<category>
<pattern>LIBLOC</pattern>
<template>The library is located at 60 S. Main St., Hometown,
Ohio 44312. Our phone number is 330-643-9157. You may also wish
to view a
<a href="http://maps.google.com//maps?q=60+s+main+st+hometown+
oh+44312" target="_blank"> map of our location. </template>
</category>

</aiml>

Table 5.2
example of adding an HTML link to chatbot code.

31

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

The first step to adding a talking avatar to a Pan-
dorabots’ chatbot is to select the Oddcast VHost but-
ton at the top of the Pandorabots screen. This will
bring you to a page similar to that shown in figure 5.1,
where you can select one of four demo faces. After
making your image selection, assign a height in pixels,
select a language and a voice from the drop-down lists,
and click Update VHost Settings. Leave the selection
Customized HTML Skin selection as Plain Text for the
time being.

After you update your settings, the system will
assign you a URL where you can view and test the
avatar. Click this link to view your results.

Test your interface a bit. Play with the settings for
the size, face, and voice of your bot to find a combina-
tion you like.

Now let’s look at the code that is embedding this
bot in your page. If you view the page source for fig-
ure 5.1, you’ll see that it is basically a frameset page
comprised of two separate frames: a “vhost” or avatar
frame, and an input frame:

<head>
<title>Oddcast Bot:</title>
</head>
<frameset rows="350,*"

border="0"">
<frame name="vhost" src="/

pandora/talk-host-

oddcast?botid=b52b47062e341e19"
scrolling="no" frameborder="no"
noresize="noresize"></frame>

<frame name="input" src="/pandora/
talk-input-oddcast?botid=b52b47
062e341e19"></frame>

</frameset>

You could simply embed the demo frameset in an
iframe within the desired web page for testing. But
you can also further customize the frames to fine-tune
your bot’s appearance and performance. Further cus-
tomization, however, requires subscription to the Site-
Pal avatar service.

Once your subscription is active, you will need to
bring three bits of information from SitePal. First, you
will need your SitePal account number. You will also
need the scene number and the configuration string
from your SitePal Editor. To locate these, click the
orange button with an arrow under the Publish option
on your SitePal account page, then click Continue Pub-
lishing (see figure 5.2.)

On the next screen, select the Embed in a Web
Page button. On the following screen, select Click
Here to Embed, and then look for the code generated
at the bottom of the subsequent page (see figure 5.3).
This code will contain all the information you will
need. Your account number will appear where you see
yyyyyy in the code below. The scene number appears

Figure 5.1
oddcast VHost screen for adding a talking avatar to a pandorabots chatbot.

32

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

where you see zzzzzzz below. Finally, the alphanu-
meric sequence in single quotes below represents the
choices you’ve made in publishing your scene.

<script language="JavaScript"
type="text/javascript" src=
"http://vhss-d.oddcast.com/
vhost_embed_functions_v2.php
?acc=yyyyyy8&js=1"></script>
<script language="JavaScript"
type="text/javascript">
AC_VHost_Embed(yyyyyy,300,
400,'',1,1, zzzzzzz, 0,1,0,'
e12345b1c12345bc8d1234ae5bb1
ef12',9);</script>

Armed with these three bits of information, you
can begin to customize your frameset.

As with the text-only example, your custom frame
will be composed of a frameset with two frame ele-
ments: the avatar and the input/output box. To create
the frameset, you will first need to locate the botid
number that is displayed within Pandorabots. After
logging into Pandorabots, click the name of the bot
with which you wish to work.

Now look at the URL at which your bot is published.

You will see the botid there as the end of the URL
string (see figure 5.4). Copy this botid sequence for use
in the frameset you will be writing.

Now move to the Pandorabot Custom HTML edi-
tor and compose a frameset using the template below.
In each frame source statement, replace the botid
xxxxxxxxxx with the one you copied from your account.

<html>
<head><title>Bot</title>
</head>
<frameset border="0"

frameborder="0"
framespacing="0" rows="330,*">

<frame src="/pandora/talk?bot
id=xxxxxxxxxx&skin=ivhost"
name="vhost">

<frame src="/pandora/talk?botid=xx
xxxxxxxx&skin=input&speak=true"
name="input">

</frameset>
</html>

Assign the frameset a meaningful name and save it.
Now we need to compose the two frame source

files. Let’s start with the ivhost file. Let’s have the

Figure 5.2
sitepal editor showing Continue publishing button. sitepal is a registered trademark of oddcast Inc. portions reproduced
with permission from oddcast.

33

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

chatbot welcome the user and then be ready to respond
to questions. Here’s the HTML code file. Table 5.3 pro-
vides an explanation of the various elements.

<html>
<body

style="background-color:white">

Figure 5.3
sitepal page showing code with the information required for further avatar customization. sitepal is a registered trademark
of oddcast Inc. portions reproduced with permission from oddcast.

Figure 5.4
pandorabots page showing botid.

34

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

<script language="JavaScript"
type="text/javascript"
src="http://vhss-d.oddcast.
com/vhost_embed_functions_v2.p
hp?acc=yyyyyyy&js=1&followCur
sor=1"></script>

<script>
var vhostLoaded=false;
var vhostSpeaking=false;
function vh_sceneLoaded() {
sayText("Welcome to the Library. How

can I help you today?",1,1,2);
vhostLoaded=true;
}
function vh_talkEnded() {
vhostSpeaking=false;
}
</script>

<script language="JavaScript"
type="text/
javascript">AC_VHost_
Embed(yyyyyy,300,400,'',1,1,
zzzzzzz, 0,1,0,'
e12345b1c12345bc8d1234
ae5bb1ef12',9);
</script>

</body>
</html>

Next we need to compose the input frame source
file. This frame contains the form in which users will
type their questions and where the bot’s answers will
be displayed. Here’s the code for the input frame file.
Table 5.4 provides the explanation.

<html>
<head>
<script>
<!--
function sf(){document.f.input.

focus();}
// -->
</script>
</head>
<body lang=en-US onload=sf()

style="background-color:white">
<script language="JavaScript">
function sayit() {
if (parent.vhost) {
if (parent.vhost.vhostLoaded) {
parent.vhost.vhostSpeaking=true;
parent.vhost.sayText("<template

context="tts"><response/></
template>",1,1,2);

} else {
setTimeout("sayit()", 500);
}
}

<html> This is the standard HTML page beginning.

<body style="background-color:white""> This assigns a background color to the frame.

<script language="JavaScript" type=""text/
javascript" src="http://vhss-d.oddcast.com/
vhost_embed_functions_v2.php?acc=yyyyyyy&js=
1&followCursor=1"></script>

This Javascript identifies the account from which the avatar
will be displayed and sets the avatar to “watch” or “follow”
the cursor.

<script>
var vhostLoaded=false;
var vhostSpeaking=false;
function vh_sceneLoaded() {
sayText("Welcome to the Library. How can I
help you today?",1,1,2);
vhostLoaded=true;
}
function vh_talkEnded() {
vhostSpeaking=false;
}
</script>

This script sets some parameters for the initial loading of
the Javascript. In this case, once the scene is loaded, the
avatar greets the user and asks how it can help.

<script language="JavaScript"
type="text/javascript">AC_VHost_
Embed(yyyyyy,300,400,'',1,1, zzzzzzz,
0,1,0,' e12345b1c12345bc8d1234ae5bb1ef12',
9);</script>

This script reconfirms the account number and identifies the
selected scene and display parameters.

</body>
</html>

These tags close the Body and the HTML page.

Table 5.3
explanation of elements in the code for the ivhost file.

35

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

}
sayit();
</script>
<table>

<tr>
<td bgColor=#FFFFFF >
<form name=f action=""

method=post>

<html>
<head>

This is the standard HTML page beginning.

<script>
<!--
function sf(){document.f.input.focus();}
// -->
</script>

This script creates a function that will direct the cursor to
the input box so that a user doesn’t need to click in the box
before starting to type.

</head>
<body lang=en-US onload=sf()
style="background-color:white">

The first tag closes the Head section of the HTML file; the
second opens the Body section. Note that the background
color of the page is set to white, and that an onload com-
mand tells the page to run the sf() function, placing the
cursor in the input box once the page is loaded.

<script language="JavaScript">
function sayit() {
if (parent.vhost) {
if (parent.vhost.vhostLoaded) {
parent.vhost.vhostSpeaking=true;
parent.vhost.sayText("<template
context="tts"><response/>
</template>",1,1,2);
} else {
setTimeout("sayit()", 500);
}
}
}
sayit();
</script>

This is the Javascript that activates the bot’s speech capability.

<table>
<tr>
<td bgColor=#FFFFFF >

These tags simply set up a table in which the form will be
displayed. The last tag assigns the background color for the
table cell to be #FFFFFF (white).

<form name=f action="" method=post> The <form> tag sets up the form so the input will be sub-
mitted.

!CUSTID! This is the all important !CUSTID! line that directs the in-
quiry to the correct bot.

<p>Type your question in the box below,
then strike the "Enter" key.</p>

This is just a paragraph providing instructions for using the
form.

<p>Ask me a question! <input size=40
name=input> </p>

This paragraph directs the user to type the question and
provides an input form element to hold it.

<p>You Said: <template><input/></
template></p>

This paragraph redisplays the user’s input text after the
user hits the enter key. The input is represented by the
<input/> tag.

<p>My reply: !OUTPUT!</
em></p>

Here’s a new paragraph to contain the bot’s reply. The actual
template response is represented by !OUTPUT!. This text is
emphasized by the (emphasis) and (bold) tags.

</form>
</td></tr>
</table>
</html>

These tags close the form, table data cell, table row, the
table itself, and the HTML form.

Table 5.4
explanation of elements in the code for the input frame file.

36

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

!CUSTID!
<p>Type your question in the box

below, then strike the "Enter"
key.</p>

<p>Ask me a question!
<input size=40 name=input> </p>

<p>You Said:
 <template><input/>
</template></p>

<p>My reply:
 !OUTPUT!
</p>

</form>
</td></tr>
</table>
</html>

Once you’ve created and saved these three files
(test.html, vhost.html, and input.html), set your
default view to the new test.html file. You will then
need to click the My Pandorabots button at the top of
the screen and publish the chatbot to activate the files
before testing your bot.

Congratulations! You now have a talking animated
chatbot! You can embed this bot in any web page using
<iframe> tags. Copy the URL of your test file as the
source of your iframe.

<iframe src="http://www.
pandorabots.com/pandora/
.................">
</iframe>

Passing Queries—Expanding the
Bot’s Knowledge with Access to
Additional Resources
In chapter 4 we discussed increasing your chat-
bot’s knowledge base by connecting it to additional
resources to which you can pass user questions. To
accomplish this, you need a combination of AIML and
HTML coding. We touched on this coding previously,
but will now expand upon it and look at customizing
the code for different resources.

The AIML code we presented for passing queries
from the chatbot to the Ohio Web Library is:

<category>
<pattern>ARTICLE ON *</pattern>
<template>
I'm opening a link to the Ohio

Web Library, which contains a
variety of magazine and journal
articles to help you. If you
don’t see the results, please
turn off your pop-up blocker.

<think>
<set name="searcharg"><star/>

</set>
<set name="search">ohweblib</set>
</think>
</template>
</category>

Paired with the code above we need some code
embedded in the HTML input frame. In both code
snippets the values of search and searcharg are
key to the correct passing of the query. search is an
alphanumeric string identifying the resource to which
the query will be passed. searcharg is the text string
that will be searched at that site.

<template>
<condition name="search"

value="ohweblib">
<script language="JavaScript">var

myWindow =window.open('http://
ohioweblibrary.org/?q=<get nam
e="searcharg"/>&defaultcat
=All');

</script>
</condition>
<set name="search">nosearch</set>
</template>

The remaining key element is the construction of
an open URL to which the query can be directed and
the placement of that URL in a JavaScript window.open
command. In many cases, you can simply look at the
URL of a completed search to identify the needed URL.

Let’s construct a fresh example, starting with the
URL of the target resource. Encyclopaedia Britan-
nica offers a free online version that can be searched
at www.britannica.com. Upon completing a sim-
ple search (on hubris) at this site, we see the search
results URL is http://www.britannica.com/bps/
search?query=hubris. If we remove the searched
word from the URL, we get http://www.britannica.
com/bps/search?query=. This string can be used to
create the JavaScript below. The search word hubris
is replaced with a <get> tag identifying the name of
the variable that holds the text string to be searched
(in this case, searcharg).

<script language="JavaScript">var
myWindow =window.
open('http://www.britannica.
com/bps/search?query=<get
name="searcharg"/>');

</script>

The above script is embedded in the code snippet
we used before, replacing the script to search Ohio

37

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

Web Library, and the value of the search variable
changed to britannica.

<template>
<condition name="search"

value="britannica">
<script language="JavaScript">var

myWindow =window.
open('http://www.britannica.
com/bps/search?query=<get
name="searcharg"/>');

</script>
</condition>
<set name="search">nosearch</set>
</template>

This code is appended to the end of the input
frame after the form tag is closed. I usually close any
open tables or divisions as well and set the text font
to the color of the page background to avoid having
confusing text appear in the frame. Here’s an exam-
ple of a complete input frame HTML file with several
pass-through resources appended. Note that there
are several catalog search value options encoded:
catalog (which searches the entire collection),
catav (which limits the results to audiovisual items),
catauth (which performs an author search),
cattitle (which performs a title search), and cat-
sub (which performs a subject search). The type
and number of such options will vary depending on
the scoping and search parameters available in your
catalog. Note also the <set> tag near the end of the
code: <set name="search">nosearch</set>.
 This clears any search parameters that have been set
in a given search process so that subsequent queries
start fresh and can access the full gamut of choices.

<html>
<head>
<link rel="stylesheet"

title="default" href="/
botmaster/common/default.css"
type="text/css">

<script>
<!--
function sf(){document.f.input.

focus();}
// -->
</script>
</head>
<body lang=en-US onload=sf()

style="background-color:white">
<script language="JavaScript">
function sayit() {
if (parent.vhost) {
if (parent.vhost.vhostLoaded) {
parent.vhost.vhostSpeaking=true;

parent.vhost.sayText("<template
context="tts"><response/>
</template>",1,1,2);

} else {
setTimeout("sayit()", 500);
}
}
}
sayit();
</script>

<table>
<tr>
<td bgColor=#FFFFFF >
<form name=f action=""

method=post>
!CUSTID!
<p>Type your question in the box

below, then strike the "Enter"
key.</p>

<p>Ask your question:
<input size=40 name=input> </p>

<p>You Said:
 <template><input/>
</template></p>

<p>My reply:
 !OUTPUT!
</p>

</form>
</td></tr>
</table>

<template>
<condition name="search"

value="catalog">
<script language="JavaScript">var

myWindow =window.open('http://
catalog.akronlibrary.
org/search/Y?SEARCH=<get
name="searcharg"/>');

</script>
</condition>
<condition name="search"

value="catav">
<script language="JavaScript">var

myWindow =window.open('http://
catalog.akronlibrary.org/
search/Y?SEARCH=<get name="sear
charg"/>&searchscope=1');

</script>
</condition>
<condition name="search"

value="catkid">
<script language="JavaScript">var

myWindow =window.open('http://
catalog.akronlibrary.org/
search/Y?SEARCH=<get name="sear

38

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

charg"/>&searchscope=2');
</script>
</condition>
<condition name="search"

value="catauth">
<script language="JavaScript">var

myWindow =window.open('http://
catalog.akronlibrary.
org/search/a?SEARCH=<get
name="searcharg"/>');

</script>
</condition>
<condition name="search"

value="cattitle">
<script language="JavaScript"”>var

myWindow =window.open('http://
catalog.akronlibrary.
org/search/t?SEARCH=<get
name="searcharg"/>');

</script>
</condition>
<condition name="search"

value="catsub">
<script language="JavaScript">var

myWindow =window.open('http://
catalog.akronlibrary.org/
search/d?SEARCH==<get
name="searcharg"/>');

</script>
</condition>
<condition name="search"

value="ohweblib">
<script language="JavaScript">var

myWindow =window.open('http://

ohioweblibrary.org/?q=<get nam
e="searcharg"/>&defaultcat
=All');

</script>
<condition name="search"

value="wolfram">
<script language="JavaScript">var

myWindow =window.
open('http://www.wolframalpha.
com/input/?i=<get
name=”searcharg"/>');

</script>
</condition>
<condition name="search"

value="dictionary">
<script language="JavaScript">var

myWindow =window.
open('http://www.merriam-
webster.com/dictionary/<get
name="searcharg"/>');

</script>
</condition>
<condition name="search"

value="britannica">
<script language="JavaScript">var

myWindow =window.
open('http://www.britannica.
com/bps/search?query=<get
name="searcharg"/>');

</script>
</condition>
<set name="search">nosearch</set>
</template>

