
Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

07

16

Chapter 6

The earliest open-source programs were those that
we now think of as the most basic. When Linus
Torvalds began work on his eponymous kernel, he

did it not because he wanted to build an operating system,
but, as he explained in the 2001 documentary Revolution
OS, because he wanted to use an operating system:

The thing about an operating system is that
you’re never supposed to see it. Nobody uses an
operating system; people use programs. The only
mission in life of an operating system is to help
those programs run.2

But when Torvalds couldn’t find what he needed else-
where in the community, he started work on his own.
And as people joined Torvalds over time, it wasn’t because
they simply wanted to use the OS, but because they want-
ed the OS to help them do something.

And when computer scientists at UC Berkeley start-
ed work on the building-block networking software that
is now an essential component of the Internet and any
computer that connects to it—even our laptops and desk-
top PCs—they weren’t doing it because networking was
an end in itself. They were doing it because it supported
other applications and uses of the computers. (The folks
at Berkeley also invented the e-mail infrastructure we all
use today.)

Matt Mullenweg’s true passion is jazz, but the expat
Texan started doing Web sites to pay for sax lessons.3
But Mullenweg soon came to appreciate the beauty of
a well-designed page and good typography and began to
struggle with the limitations of the tools that he had to
achieve that beauty.

At the time, everybody was using “nl2br,” a func-

tion that converted new lines to breaks, but I
wanted it to do better.4

The problem was that breaks, the
 tag, made a
piece of text look correct, but they weren’t semantically
correct. That is, a break gave the appearance of para-
graphs in the text, but they didn’t work like paragraphs.
And that meant that some typography rules didn’t work.
How could you tell the Web browser to make the first few
words of the first paragraph of each section bigger if the
Web browser didn’t know where the paragraphs were?

And fixing that was just a start. Mullenweg wanted to
automatically insert curly quotes, the quotes that smartly
lean left or right on each side of the quoted text, and a
dozen other things that might fix what he thought was
the ugliness of so much text on the Web.

So Mullenweg, who admits he hadn’t done much pro-
gramming before that, started work on a new function
that did what he wanted. He sought help from friends,
people on mailing lists, even his dad, and eventually put
together the first version of “autop.”

The code has been modified over time, reused in other
projects, and generally adopted everywhere to the point
that the features it provides have become commonplace
and expected in any software that publishes to the Web.

And so a fellow who would have rather been playing
in jazz clubs found himself writing bits of code. And a
number of people, who each had their own goals, found
those bits of code useful. And some of them contributed
fixes and improvements back.

That’s how open-source communities take shape.
“Good programmers know what to write. Great ones

know what to rewrite (and reuse),” explains Eric Raymond
in “The Cathedral and the Bazaar,” and most successful
open-source projects prove the truth of it.5

What Makes Open
Source Work?
The Linux community seemed to resemble a great babbling bazaar of differing agendas and approaches . . .
out of which a coherent and stable system could seemingly emerge only by a succession of miracles.

—Eric Raymond 1

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2007

17

The development of the Apache Web server offers an
interesting look at how programmers will reuse code and
communities can form to solve a common problem while
achieving different goals.

Rob McCool wrote httpd, a Web server program
that ran on Unix, in the early 1990s while working at the
National Center for Supercomputing Applications (NCSA),
University of Illinois, Urbana–Champaign.6 NCSA httpd
was one of the first and most popular Web server applica-
tions, but formal development came to a halt after McCool
left NCSA in 1994. Soon, a new group of sysadmins and
webmasters began developing and sharing patches to
solve problems they encountered.7 Eventually the group
released a new version in 1995, calling it “Apache” in pho-
netic reference to the number of patches that had been
incorporated in the release.8

Apache quickly became the most popular Web server
software worldwide, a spot that it’s held for more than a
decade.9

Part of Apache’s success has been its extensibil-
ity. Apache inherited NCSA httpd’s Common Gateway
Interface (CGI) standard, which allowed Apache and other
software to work together to serve content to Web brows-
ers. Apache would handle the details of communicating
with the Web client, while the other software would gen-
erate the content of the page to be displayed and commu-
nicate that back to Apache through the Common Gateway
Interface.10

CGI was already a de facto standard by the time the
World Wide Web Consortium recognized it in 1995.11
Web-based applications started to take shape as program-
mers took advantage of the CGI to speed their work. By
not having to build the components of the software that
communicated with all the Web browsers visiting the site,
developers could focus their attention on building the
components that made their application unique.

Rasmus Lerdorf collected a set of CGI applications he
had been using with Apache and released them in 1995
as Personal Home Page Tools, or PHP.12 Lerdorf not only
developed the first version of PHP, but also contributed to
Apache.13 “It was purely a case of needing a tool to solve
real-world Web-related problems,” Lerdorf explained.14
In 1997 he was approached by a group of programmers
who wanted to write a new parsing engine for the proj-
ect. Lerdorf accepted, and along with “a few other people
who had been sending patches and code,” the newly as-
sembled group released PHP 3—now the “PHP: Hypertext
Preprocessor”—in 1998.15

This was probably the most crucial moment dur-
ing the development of PHP. The project would
have died at that point if it had remained a one-
man effort and it could easily have died if the
newly assembled group of strangers couldn’t
figure out how to work together towards a com-

mon goal. We somehow managed to juggle our
egos and other personal events and the project
grew.16

And grow it did. About 20 million Web sites world-
wide have PHP installed, and there are a number of PHP-
based open-source projects in every imaginable catego-
ry.17 The popularity of PHP and similar tools eventually
highlighted a performance problem in the CGI standard,
and developers soon built Apache modules to solve the
problem. Today, mod_php is just one of over 400 such ex-
tensions to Apache, revealing the flexibility that has made
it the most popular Web server.18

Parallel and codependent development, such as can
be seen with Apache and PHP, can be seen in most every
open-source project today.

The number of explanations for how open source
works is on par with the number of theories of econom-
ics, government, or social systems. But everybody I spoke
with pointed to one or more of the following essential
characteristics of successful open-source projects: critical
mass, evolvability, and passion.

Critical Mass

The first release of Linux in September 1991 was initially
downloaded by ten people. Five sent back bug fixes. By
1993, there were an estimated 20,000 Linux users world-
wide, with about 100 contributing to the code.19

Eric Raymond points to the “massively-parallel peer
review” as one of the key components to successful open-
source projects.20 And Linus Torvalds is credited with the
maxim explaining, “Many eyes make all bugs shallow.”21

And those eyes include not just programmers, but
an entire community of varying interests, skill levels, and
backgrounds. Developer and author Forrest Cavalier iden-
tified the following three types of participants in open-
source communities.22

●	 The need-driven consumer: The largest part of any
active open-source community is users who partici-
pate because the software solves a problem or fulfills
a need. Users may report bugs, but they may not be
be programmers and they may not be able to or inter-
ested in fixing them.

●	 The user-developer: User-developers—Raymond de-
scribes them as co-developers—may contribute code
or documentation, as well as participate in discussion
and advocacy. Their motivation, according to Cavalier,
“may be to have fun, learn, make a contribution, or
even get something that fulfills a need of use.”23

●	 The core developer: A small corps of participants will
be actively developing and advancing a project. The
Linux kernel is managed by a group of six core devel-

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

07

18

opers (Torvalds + 5); Mullenweg credits a team of fewer
than ten people with leading WordPress development.
Core developers may change over time, but they shoul-
der the bulk of the work of advancing the project and
fixing bugs identified elsewhere in the community.

 Licensing a project under the GPL will make it
open source, but a project needs a community to use and
support it for it to be successful. Like financial markets,
open-source communities are most efficient when there
are large numbers of participants.24 Cavalier, responding
to Raymond’s “Bazaar,” was particularly interested in the
“effective size” of the community or bazaar:

The “effective size” of a bazaar: The total of the
number of participants motivated and able to
contribute the results of individual effort (modi-
fications, enhancements) or provide feedback to
the bazaar for a specific activity.

“Specific activity” is very important to effective
size. Bazaars may have very large effective sizes
for some activities and not others. For example,
a bazaar with a size of 5000 may only have an
effective size of 5 (or even less than 1) for an
unpopular activity such as documentation or re-
gression testing. This may be due to lack of mo-
tivation or inability to contribute. (Many bazaar
efforts are volunteer efforts.)25

In offering an academic explanation of the open-
source development model, Joseph Feller and Brian
Fitzgerald agreed:

Users are a critical feature, serving as coders,
testers, documenters, and also providing prompt
notification of new requirements.26

Evolvability

Software evolves. Well, software that lasts evolves. SWISH
became Swish-e, b2 became WordPress, and Apache con-
tinues to be patched and extended to serve new needs.

This evolution is essential to meeting our changing
needs, and the GPL promotes evolvability by protecting
the right of any participant in the community to solve
a problem in a program. Active communities effectively
emulate organic evolution in the code they produce, of-
ten testing different solutions in parallel and selecting the
most fit bits of code for each new release. And if the com-
munity can’t agree on the most fit solution, communities
can split, as happened when a new group of programmers
rejected WordPress and began work on the original b2
code with a project called b2evolution.

Still, some software is more amenable to evolution
than others. Writer and NYU professor Clay Shirky found
that some systems, especially those promised to be the
next “industry standard,” are too large and unwieldy to
evolve. Writing in 1996 on the evolution of the Web and
HTML, Shirky noted:

Evolvable systems—those that proceed not under
the sole direction of one centralized design au-
thority but by being adapted and extended in
a thousand small ways in a thousand places at
once—have three main characteristics that are
germane to their eventual victories over strong,
centrally designed protocols.

●	 Only solutions that produce partial results
when partially implemented can succeed.
The network is littered with ideas that would
have worked had everybody adopted them.
Evolvable systems begin partially working
right away and then grow, rather than need-
ing to be perfected and frozen. Think VMS
vs. Unix, cc:Mail vs. RFC-822, Token Ring
vs. Ethernet.

●	 What is, is wrong. Because evolvable systems
have always been adapted to earlier condi-
tions and are always being further adapted
to present conditions, they are always behind
the times. No evolving protocol is ever per-
fectly in sync with the challenges it faces.

●	 Finally, Orgel’s Rule, named for the evolu-
tionary biologist Leslie Orgel—“Evolution is
cleverer than you are.” As with the list of the
Web’s obvious deficiencies above, it is easy
to point out what is wrong with any evolv-
able system at any point in its life. No one
seeing Lotus Notes and the NCSA server
side-by-side in 1994 could doubt that Lotus
had the superior technology; ditto ActiveX
vs. Java or Marimba vs. HTTP. However, the
ability to understand what is missing at any
given moment does not mean that one per-
son or a small central group can design a
better system in the long haul.

Centrally designed protocols start out strong
and improve logarithmically. Evolvable protocols
start out weak and improve exponentially. It’s
dinosaurs vs. mammals, and the mammals win
every time. The Web is not the perfect hypertext
protocol, just the best one that’s also currently
practical. Infrastructure built on evolvable proto-
cols will always be partially incomplete, partially
wrong and ultimately better designed than its
competition.27

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2007

19

Software follows many of the same rules. Apache may
not be the best Web server for every use, but its flexible
architecture and constant evolution continue to attract a
large number of developers who would rather live with—
and perhaps fix—the limitations than look elsewhere.

Passion

WordPress’s Matt Mullenweg hardly hesitates before
answering. “You have to be the most passionate user—
passionate to the point of obsession,” he offers.28

Eric Raymond suggests, “Every good work of soft-
ware starts by scratching a developer’s personal itch,”
adding, “To solve an interesting problem, start by finding
a problem that is interesting to you.”29

To explain the social context of open-source de-
velopment, Raymond repeats a quote found in Gerald
Weinberg’s Psychology of Computer Programming. The
quote is from Memoirs of a Revolutionist, the autobiogra-
phy of Pyotr Alexeyvich Kropotkin, a nineteenth-century
Russian anarchist:

Having been brought up in a serf-owner’s family,
I entered active life, like all young men of my
time, with a great deal of confidence in the ne-
cessity of commanding, ordering, scolding, pun-
ishing and the like. But when, at an early stage,
I had to manage serious enterprises and to deal
with [free] men, and when each mistake would
lead at once to heavy consequences, I began to
appreciate the difference between acting on the
principle of command and discipline and acting
on the principle of common understanding. The
former works admirably in a military parade, but
it is worth nothing where real life is concerned,
and the aim can be achieved only through the
severe effort of many converging wills.30

Raymond goes on:

To operate and compete effectively, hackers who
want to lead collaborative projects have to learn
how to recruit and energize effective communi-
ties of interest in the mode vaguely suggested by
Kropotkin’s “principle of understanding.”31

While problems may get solved by people who care
enough to solve them, open-source communities build
around participants that are passionate about solving
a problem. With no means of applying the traditional
management techniques or coercion, leaders in the open-
source world emerge based on the passion for a project.

Notes
	 1.	 Eric S. Raymond, “The Cathedral and the Bazaar,” 1998,

on the First Monday Web Site, www.firstmonday.org/
issues/issue3_3/raymond (accessed Mar. 19, 2007).

	 2.	 Linus Tovalds, interviewed in Revolution OS, DVD, doc-
umentary by J. T. S. Moore (Wonderview Productions,
2001).

	 3.	 Matt Mullenweg (WordPress developer), interview by the
author, Aug. 6, 2006.

	 4.	 Ibid.
	 5.	 Raymond, “The Cathedral and the Bazaar.”
	 6.	 “About the Apache HTTP Server Project,” on the Apache

HTTP Server Project Web site, http://httpd.apache.org/
ABOUT_APACHE.html (accessed Mar. 19, 2007).

	 7.	 “Apache HTTP Server,” Wikipedia, http://en.wikipedia
.org/wiki/Apache_HTTP_Server (accessed Mar. 19, 2007).

	 8.	 “Information on the Apache HTTP Server Project,” ar-
chived on the Wayback Machine Web site, http://web
.archive.org/web/19970615081902/http://www.apache
.org/info.html (accessed Mar. 19, 2007).

	 9.	 “Netcraft Web Server Survey: By Server,” July 2006, Netcraft
Web site, http://survey.netcraft.com/Reports/0607/
byserver (accessed Mar. 19, 2007).

10.	 “Common Gateway Interface,” Wikipedia, http://
en.wikipedia.org/wiki/Common_Gateway_Interface (ac-
cessed Mar. 19, 2007).

11.	 “Common Gateway Interface,” last updated Oct. 13, 1999,
on the World Wide Web Consortium Web site, www
.w3.org/CGI (accessed Mar. 19, 2007).

12.	 “PHP,” Wikipedia, http://en.wikipedia.org/wiki/PHP (ac-
cessed Mar. 19, 2007).

13.	 “Rasmus Lerdorf: Biography,” O’Reilly Media Web site,
www.oreillynet.com/pub/au/85?x-t=book.view (accessed
Mar. 19, 2007).

14.	 Rasmus Lerdorf, “Do You PHP?” Oracle Web site, www
.oracle.com/technology/pub/articles/php_experts/
rasmus_php.html (accessed Mar. 19, 2007).

15.	 Ibid.
16.	 Ibid.
17.	 “Usage Stats for December 2006,” PHP Web site, www

.php.net/usage.php (accessed Mar. 19, 2007).
18.	 “Apache Module Registry,” http://modules.apache.org (ac-

cessed Mar. 19, 2007).
19.	 “Linux: The Making of a Global Hack,” sidebar to Josh

McHugh, “For the Love of Hacking,” Forbes 162, no. 3
(Aug. 10, 1998), available online at http://members.forbes
.com/forbes/1998/0810/6203094s1_print.html (accessed
Mar. 19, 2007).

20.	 Eric S. Raymond, “The Magic Cauldron,” June 1999, available
online at www.catb.org/~esr/writings/magic-cauldron/
magic-cauldron.txt (accessed Mar. 19, 2007).

21.	 Linus Torvalds, quoted in John G. Drummond, “Open
Source Software and Documents: A Literature and Online

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

07

20

Resource Review,” April 5, 2000, available online at www
.omar.org/opensource/litreview (accessed Mar. 19, 2007).

22.	 Forrest J. Cavalier, III, “Some Implications of Bazaar
Size,” Aug. 11, 1998, on the Mib Software Web site, www
.mibsoftware.com/bazdev/0003.htm (accessed Mar. 19,
2007).

23.	 Ibid.
24.	 Eugene F. Fama, “Random Walks in Stock Market Prices,”

Financial Analysts Journal 21 (Sept./Oct. 1965): 55–59,
available online at www.e-m-h.org/Fama1965a.pdf (ac-
cessed Mar. 19, 2007).

25.	 Cavalier, “Some Implications of Bazaar Size.”
26.	 Joseph Feller and Brian Fitzgerald, “A Framework

Analysis of the Open Source Development Paradigm,” in

Proceedings of the 21st Annual International Conference
on Information Systems, Brisbane, Australia, Dec. 2000,
ed. W. Orlikowski et al., available online at www.csis.ul.ie/
staff/bf/oss-icis00.pdf (accessed Mar. 19, 2007).

27.	 Clay Shirky, “In Praise of Evolvable Systems,” 1996 (first
appeared in the ACM’s net_worker), www.shirky.com/
writings/evolve.html (accessed Mar. 19, 2007).

28.	 Mullenweg interview.
29.	 Raymond, “The Cathedral and the Bazaar.”
30.	 Pyotr Alexeyvich Kropotkin, quoted in Raymond, “The

Cathedral and the Bazaar.”
31.	 Raymond, “The Cathedral and the Bazaar.”

