Chapter 2

WORKING WITH HTML, CSS,
AND HTTP

Working with HTML

An essential aspect of running a website is creating HTML files. Even sites
that rely heavily on page technologies other than static HTML, such as
script-driven pages, inevitably keep many static HTML files on the site.
Although Web authors can write HTML in any text editor, many have
adopted specialized HTML editor programs to handle the job.

Ideally, an HTML editor should manage the job of converting an author’s
writing into the structures defined by the HTML standard without requiring
the author to know the details of that standard. As the job is accomplished,
the editor program may carry out additional tasks, such as letting the author
fine-tune the finished document’s appearance or handling site management
tasks such as uploading documents to a server and checking its links.

The most widely used HTML editors handle these secondary tasks with great
success. Over the years, however, many designers created their actual HTML
code with an emphasis on appearance rather than structure. This so-called
presentational markup achieved popularity with an older generation of
browsers because no widely supported alternative to controlling an HTML
document’s appearance was available.

Presentational HTML has drawbacks, though, and a growing number of Web
authors are abandoning it in favor of HTML markup that describes a
document’s structure. Reasons for this choice include:

Many aspects of presentational markup make assumptions about the
user's display environment (specifically, screen resolution and window
width) that are increasingly unwarranted and may lead to accessibility
problems.

A common example is pages laid out with tables of a specific width, mea-
sured in pixels. A table design that looks right only on a screen 800 pixels
wide looks increasingly poor in screens 1,024, 1,280, or 1,600 pixels wide.
Regardless of the user’s screen width, the browser window displaying a
page may be any fraction of that size. As screen sizes and resolutions go up,
there is less likelihood that a browser will be running full-screen. Also, as
described in the section on accessibility in Chapter 4, table-based layouts
and other presentational effects may make a page incomprehensible to
users with screen readers, and therefore inaccessible.

The standard language for describing a document’s appears, cascading
stylesheets (CSS) is more powerful and flexible than presentational
HTML, and good CSS design allows Web managers to apply design
changes to an entire page or entire site more simply and efficiently
than presentational HTML.

Careless use of presentational HTML often introduces markup into a page
that violates the HTML standard, which makes using the page impossible
with any external tools that check for or require valid markup.

B0 ejeradinosyday Mmm spioday ABojouyda] Aseuqr]

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

XHTML 1.0, www.w3.org/
TR/xhtml1
HTML 4.01, www.w3.org/
TR/html4

XHTML 1.1, which is
primarily an experiment in
breaking the HTML
language into modular
components, and an early
draft of XHTML 2.0; each
have only a strict mode.

* Presentational HTML was created for a generation of browsers that is
now so little used that authors can increasingly opt to use state-of-the-
art stylesheets to give the great majority of their users richly formatted
pages but still give users of older browsers fully functioning pages.

* Since 1997, the HTML standard has explicitly encouraged the cleanest
possible separation between describing document structure in HTML and
document appearance in CSS. Aspects of presentational markup have
been officially discouraged or deprecated, since then, and are likely to
disappear altogether in future versions of HTML and XHTML.

To lessen these problems, some of the most popular HTML editors suggest
document appearances through stylesheets and have made generating
clean, structural, valid HTML easier (even a default choice).

HTML and XHTML

Many authors are unclear about what XHTML is and how it relates to HTML.
The two are similar but derived from different parent languages.

HTML was created using Standard Generalized Markup Language (SGML),
which is an older standard designed with great flexibility in markup options.
This standard includes features such as optional closing tags for elements
such as HTML's p element, and more obscure syntax conventions that close
multiple tags simultaneously. This flexibility was originally built into SGML to
maximize its ability to interoperate with multiple proprietary publishing
programs. The same flexibility, however, makes SGML a difficult format for
computer programs to parse with a reliable understanding of the document
structures used.

XHTML 1.0 is equivalent to HTML 4.01, but its parent language is XML. XML
is derived from SGML but takes only a subset of SGML's features, eliminat-
ing much of the flexibility SGML provides in tagging conventions. This
streamlining of features makes XML documents more consistent in their
syntax, which in turn makes developing software to work with XML docu-
ments easier. Any future revisions to the HTML/XHTML languages will likely
be created only as XHTML.

In addition to differences due to their parent languages, the HTML 4.01
and XHTML 1.0 standards each provide three separate versions of their
respective languages:

e Astrict version, with no presentational features at all

e Atransitional version with presentational features from HTML 3.2
available, but deprecated

e A frameset version that adds deprecated features for building framesets
to the transitional version.

HTML editors should indicate which of these languages they are using.

Text editors and graphical editors

Historically, HTML editors have been divided into two main types: text
editors and graphical editors. An advantage to using text editors is that they
can be used for many different kinds of files. A Web manager can use the

same application to create, for example, HTML files, cascading stylesheets
(CSS) , PHP pages, and Perl scripts for logfile analysis. Text editors are not
limited to the HTML elements and attributes offered by a graphical editor,
which is too often a subset of what the standard provides. Most text
editors do provide shortcut or macro functions to simplify inserting the
most commonly used snippets of HTML markup.

An added advantage is that, with rare exceptions, some text editor is always
available on a server to edit HTML. A Web manager with HTML editing
experience only in Dreamweaver under Windows may be unable to make
emergency updates to a page on a server without Dreamweaver available. A
Web manager familiar with editing HTML with text editors can always make
updates or corrections with editors available on the server.

HTML is a language of objects and modifiers. The objects (such as paragraph, table, or-
dered list), including their content, are elements. The modifiers (such as class=, title=,
start=) are attributes. In HTML, most but not all elements must have starting and ending
tags (<p>, </p>; <table>, </table>; ,). In XHTML all elements must have a
starting and ending tags (including, for example,
</br>, or alternatively
.)

The most obvious disadvantage of text editors is that they often provide too
little assistance to inexperienced authors. Graphical editors typically do a
better job of letting authors just start typing to ensure the result is a usable
Web page. Graphical editors also constantly show the author a representa-
tion of how the page might look in a browser. Text editors do not, although
they may have a command to preview a page in a browser.

Constant visual feedback may help some authors, but it may also cause them to
ignore the page’s structure and overlook factors that cause users with different
display environments to receive a substantially different view of the page.

Graphical HTML editors emphasize an editing mode that allows authors to
select HTML elements from formatting menus and displays documents as
they would appear in a typical browser configuration. With graphical editors
rather than text-based editors, authors are traditionally more likely to
concentrate on presentational aspects of their documents.

This emphasis on presentation has been especially true of previous versions
of some of the most popular graphical editors. Two widely used programs,
Microsoft FrontPage and Macromedia Dreamweaver, often have been
criticized for the poor quality of the HTML markup they create. Recent
versions, however, provide ways for authors either to strip out presentational
markup or to create clean markup by default.

Macromedia went so far as to have a team of engineers work with the
Web Standards Organization to ensure Dreamweaver MX generated valid
markup by default. At the same time, Microsoft worked to make sure
that FrontPage 2002 could generate highly accessible pages, which
reflects the need to generate clean code.

Making blanket statements about which single editor is best for all authors
isn't possible. As with choices of server hardware and software, adopting
institutional standards where they exist is more useful, as is learning to use
them well rather than insisting on a particular program against the wishes of
purchasing and support departments. For organizations without an editor of
choice, or those in the process of deciding on one, look for, or look out for,

Web Standards Organiza-
tion, www.webstandards.org

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

FTP: File transfer protocol

HTML Tidy,
http:tidy.sourceforge.net

Online validators are
available from the World
Wide Web Consortium at
http://validator.w3.org and
from the Web Design Group
at www.htmlhelp.com/tools/
validator.

the following features:

e Modern Web pages should be written with a clean separation between a
document structure described in HTML and one or more suggested
appearances described in stylesheets. An editor should either default to
this approach or allow an author to select it as a configuration option.
These editors also should include tools to edit cascading stylesheets.

* The same page is commonly edited at different times in different editors,
some of which may understand different versions of HTML or different
sets of tags. In the past many editors, on opening a document, would
strip out or reformat markup they didn’t recognize. Most editors now
recognize that they should be able to open and save documents created
in other programs without damaging the markup.

e Web authors commonly create pages on one computer, typically a desktop
workstation while the website resides on a different computer—often a
dedicated server. Once finished, files need to be transferred from one
computer to another. Authors can transfer files with file transfer programs,
including Internet Explorer, or with the command-line FTP utility available
with most operating systems, but they may find the process easier if the
HTML editor provides a built-in version of this function.

e Editors should offer all the HTML elements and attributes available in
the version of HTML they claim to support. Even graphical editors should
allow authors to edit HTML source code directly without later changing
the author’s markup.

Increasingly, these features are available in the most recent versions of
dedicated HTML editors. They are often still lacking in general word proces-
sors or other applications with a “Save as HTML" function.

Beyond the editor: Other tools

Regardless of the editor used, authors may choose to use external utilities to
polish their markup. One common tool available separately, or as a built-in
feature of several editors, is HTML Tidy. Tidy is a syntax checker that catches
irregularities inserted by buggy editors or mistakes in coding by hand with a
text editor. HTML files that have been processed by Tidy are unlikely to
retain serious markup errors and usually comply with the HTML standard.

To ensure a page complies with the standard, many Web authors use a
validation service. The validation process compares a document in a certain
markup language, in this case HTML, against the formal definition for that
language and reports every syntax error found.

Authors may be tempted to decide validation is unimportant because the
page usually appears to display correctly in the author’s browser. But most
graphical editors create HTML with many syntax errors. A validator might
report several dozen, if not several hundred, syntax errors in a page. Valida-
tion can be a frustrating process initially.

Validation is increasingly important because invalid markup cannot be
guaranteed to display sensibly if the user’s browser, screen resolution, or
operating system differ substantially from the author’s. Invalid and presenta-
tional markup both introduce problems for accessible page designs, which
are required on an increasing number of websites.

Elements of modern HTML pages

Too many guides and tutorials on HTML still describe a language that predomi-
nated in the mid-1990s. Although browsers that cannot support recent develop-
ments to HTML are still in use, they are not affected by using the modern
markup features described here. Because these features are supported by a
large, growing number of browsers, authors should take advantage of them.

DOCTYPE declarations. One feature of a Web page that validators now
require is a DOCTYPE declaration. The declaration is a formal way of announc-
ing what version of HTML, or document type definition, a page conforms to.
Identifying a page’s DOCTYPE allows a validator to determine which set of
rules applies to a document; in the past, including declarations was of limited
benefit, since it only affected how validators looked at a page.

Two prominent browsers, Internet Explorer 6 and Mozilla (including Netscape 7)
now use a page’s DOCTYPE declaration, if present, to switch between a page
rendering mode designed for substantially valid, structural markup and
stylesheets, and one designed for backward compatibility with older authoring
practices, presentational markup, and in some cases broken stylesheets.

Differences between these rendering modes can alter on-screen display of
page elements; changes to margins around elements is particularly common.
This behavior is written into Internet Explorer 6.0 for Windows and 5.0 for
Macintosh, and in browsers based on the open-source Mozilla project,
including Netscape 6 and 7. Current versions of Mozilla actually select from
three rendering modes based on DOCTYPE values.

Some HTML editors automatically include declarations that either are format-
ted incorrectly or refer to a completely wrong version of HTML. Older ver-
sions of Microsoft Frontpage often used a declaration claiming the page was
written in HTML 2.0. To use Tidy on these pages, validate them, or control
browser DOCTYPE behavior, edit the pages manually. Correcting the DOCTYPE
declaration may be necessary.

If used, a DOCTYPE declaration must be the first line of an HTML file, or the
first line output by a script after any HTTP headers. Declarations are case-
sensitive, so errors in capitalization prevent validators from processing a
page. Common declarations for HTML are:

HTML 4.01 transitional

<! DOCTYPE HTML PUBLIC “-//WBC//DTD HTM. 4. 01
Transitional//EN
"http://ww. w3.org/ TR htm 4/1 cose. dtd” >

HTML 4.01 strict

<! DOCTYPE HTML PUBLIC “-//WBC//DTD HTM. 4.01//EN
"http://ww. w3.org/ TR htm 4/strict.dtd” >

XHTML 1.0 transitional

<! DOCTYPE htm PUBLIC “-//WBC//DTD XHTM. 1.0
Transitional//EN

"http://ww. w3. org/ TR xht ml 1/ DTD/ xht mi 1-
transitional.dtd”>

XHTML 1.0 strict

<! DOCTYPE html PUBLIC “-//WBC//DTD XHTML 1.0 Strict//EN
"http://ww. w3. org/ TR/ xht ml 1/ DTDY xht ml 1-strict.dtd”>

Internet Explorer’s
DOCTYPE-based decision
making is documented at
http://msdn.microsoft.com/
library/default.asp?url=/
library/en-us/dnie60/html/
cssenhancements.asp.

Mozilla’s “DOCTYPE
Sniffing” is documented at
www.mozilla.org/docs/web-
developer/quirks/
doctypes.html.

See a more complete set of
possible declarations at
http://validator.w3.org/sgml-
lib/catalog.

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

Multipurpose Internet Mail
Extensions (MIME) is a
standard for encoding any
computer data for
transmission on the Internet

No firm list of allowed link
relationships exists, but
suggestions are written into
the HTML specification.
Mozilla's site navigation bar
has links for all these
relationships but also
supports any other
relationship through a drop-
down menu.

Link relationships. Another feature of modern HTML that will soon become
more useful is the use of link relationships. All versions of the HTML standard
have defined a link element for identifying related pages and articulating
what the relationship of each is. Almost every page is related to other pages.
Consider this markup sample:

<!—This is section4. html —
Previ ous<a>
Next </ a>

These links refer to two related pages, and a human reader can understand
what those relationships are: previous and next, but this markup has two
drawbacks. First, in the entire document, only the single words Previous and
Next are associated with these links, when in fact the entire section4.html
document is related to these two pages. If this section of markup scrolls out
of the browser window, the user has no way to navigate to the Previous and
Next pages.

Second, nothing in the markup allows the browser itself to understand that
these links describe these important relationships, so the browser cannot
present them in a consistent way from page to page and from site to site,
leaving users solely dependent on each author’s idiosyncratic style for
displaying these links.

Both of these drawbacks are addressed by the link element, which applies a
relationship to an entire document in a way the browser can understand,
creates an interface that is always available as the user reads the page, and is
consistent on all pages using link relationships.

The most widely supported link relationship is for an associated stylesheet;
that link is included in a document’s head this way:

<link rel ="styl esheet” type="text/css” href="style.css”">

To support the possibility of other stylesheet formats, this link element must
specify the type of the linked document as “text/css.” The same syntax is
used for other relationships, without the MIME type; the rel attribute
describes the relationship of the linked document to the current document.

To express the hyperlinks above as link elements, this markup would be
written into the document head:

<link rel ="styl esheet” type="text/css” href="style.css”">
<link rel ="previous” href="section3.htm ">
<link rel ="next” href="sectionb.htm"”>

A complete set of relationships might be:

<link rel ="styl esheet” type="text/css”
href="styl e.css”">

<link rel ="previous” href="section3.htm ">
<link rel ="next” href="sectionb.htm"”>

<link rel="first” href="introduction.htm ">
<link rel="last” href="conclusion.htnm ">

<link rel ="contents”

href ="t abl e-of -contents. htm ">
<link rel ="bibliography” href="references. htm ">
<link rel ="author” href="/staff/c_jones.htm ">
<link rel ="up” href="all-ebooks. htm ">
<link rel="top” href="/wel cone.htm ">
<link rel="alternate” |ang="es”

href="../spani sh/ section4. htm"”
title="In Spanish / En Espa&ntil de;ol”>

Historically, few browsers have ever taken advantage of relationships other
than stylesheets, but two, Mozilla and Opera, have introduced versions that use
HTML link elements to create navigation buttons in the browser interface.
Microsoft has not addressed support for this standard in Internet Explorer.

Mozlla 1.2 and any browsers based on it pre-fetch documents with a link relationship of
“next.” That is, asa user reads one document, in the background the browser downloads
any document explicitly linked as the next document. Whether this feature will be entirely
successful is too early to determine, but it has the potential to make websites with link
relationships seem faster to users, as many documents they access will already be down-
loaded when they request them.

Modern forms. Starting with HTML 4.0, many features were added to the
HTML language with the intent of improving accessibility. Several of these
changes have the potential to make HTML forms more usable than they have
usually been in the past.

The first of these is the label element, which associates explanatory text with
a form input. Consider this section of a form:

<p>I nter-Library Loan Options: \Wat format are you

borr owi ng?</ p>

<p>

<i nput type="radi 0” name="format” val ue="book”> Book

<i nput type="radi 0” name="format” value="article”>
Journal Article</p>

As written, graphical browsers will display a small radio button in front of
the words Book and Journal Article, and will let mouse users select from
those choices only by clicking on the small radio buttons. This alternative uses
the label element to make this selection more usable:

<p>I nter-Library Loan Options: \Wat format are you
borr owi ng?</ p>

<p>

<i nput type="radi 0” name="format” val ue="book”

i d="book button”>

<| abel for="book button”>Book</I| abel >

<i nput type="radi 0” name="format” value="article”
id="article button”>

<l abel for="article_button”>Journal Article</I|abel></p>

Although this markup doesn’t affect the appearance of the form, supporting
browsers would now allow mouse users to click the words Book and Journal
Article themselves to make the selection. Label phrases are often an easier
target for the mouse pointer, and use of text labels for form inputs also dupli-
cates the behavior common to dialog boxes in most applications, making Web
inputs and operating system menus more consistent with each other.

Another feature that makes inputs more usable, especially in relatively
complex forms, is the fieldset element. A fieldset groups a set of logically
connected form inputs; graphical browsers typically put a border around
them. An optional legend element gives this grouping a name, usually
displayed near or on top of the border:

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

<p>I nter-Library Loan Options: Wat fornmat are you
borr owi ng?</ p>

<fiel dset >

<l egend>Avai | abl e For mat s</| egend>

<i nput type="radi 0" name="format” val ue="book”

i d="book button”>

<l abel for="book button”>Book</I| abel >

<input type="radi 0" nanme="fornmat” value="article”
id="article button”>

<l abel for="article_ button”>Journal Article</|abel></p>
</fieldset>

Another forms-related feature that increases usability is the optgroup element.
Grouping options was not added specifically for accessibility reasons, but to
add organization to long drop-down lists, making them easier for all users to
select from. For example, this list might grow to be unmanageable:

<p>Avai | abl e resource gui des: </ p>
<opti on nane="gui de” >

<sel ect >Art </ sel ect >

<sel ect >Ast r onony</ sel ect >
<sel ect >Cheni stry</sel ect >
<sel ect >Geol ogy</ sel ect >

<sel ect>Li terature</sel ect>
<sel ect >Psychol ogy</ sel ect >
<sel ect >Publ i ¢ Heal t h</ sel ect >
<sel ect >Soci al Wrk</sel ect >
</ opti on>

By contrast, in a browser that visually separates this list into groups, the list
can grow longer and still remain usable:

<p>Avai | abl e resource gui des: </ p>
<opti on nane="gui de” >

<optgroup | abel ="Arts and Hunanities”>
<sel ect >Art </ sel ect >

<sel ect>Li terature</sel ect>

</ opt gr oup>

<opt group | abel =" Soci al Sci ences” >
<sel ect >Psychol ogy</ sel ect >

<sel ect >Publ i ¢ Heal t h</ sel ect >
<sel ect >Soci al Wrk</sel ect >

</ opt gr oup>

<opt group | abel =" Sci ences” >

<sel ect >Ast r onony</ sel ect >

<sel ect >Cheni stry</sel ect >

<sel ect >Geol ogy</ sel ect >

</ opt gr oup>
</sel ect >

These forms-related features are supported by current versions of Internet
Explorer and Mozilla browsers, including Netscape 6 and 7. A comprehensive
list of features added in HTML 4 is available in the HTML 4.01 specification.

Working with CSS

In 1996, the World Wide Web Consortium (W3C) released the first version of a
language for suggesting details of a Web document’s appearance. This
language, cascading stylesheets (CSS), was supported incompletely or incor-
rectly in earlier browsers, but recent versions of all major browsers support
nearly all the first versions of CSS (CSS1) and substantial parts of the second
version (CSS2).

With a little care, authors can safely use CSS to provide richer formatting to
their sites than was previously possible with HTML alone. They also can
ensure this formatting doesn’t adversely affect users of older browsers, who
would see a fully functioning but plainly formatted page.

Principles of CSS

A stylesheet is a collection of rules. Each rule consists of a selector followed
by paired sets of style properties and their values. A selector, in its basic
forms, can be an HTML element (all <p> elements, for example), a class of
elements (<p class="database-description”>), or one uniquely identified
element (<p id="psycinfo”>). Selectors also can be applied to any element
with a certain class attribute (<p class="newsflash”> and also <h3
class="newsflash”>). Other selectors are:

Grouped selectors. The same style rule can be applied simultaneously to
several selectors in a comma-separated list:

p, td, th { font-fanmly: Arial, sans-serif; }

Contextual selectors. Elements that are descendents of other elements may
be selected by entering the ancestor element, a space, and the descendent
element. Contextual selectors may be grouped. For example, cited titles are
typically rendered with italic fonts, but if found within italicized passages they
are typically rendered with roman fonts. This rule can be expressed as:

cite { font-style: italic; }
emcite, i cite { font-style: normal; }

Applying these style rules will cause the following HTML to be rendered
correctly:

<p>The Anerican literature discussion group will be
reading <cite>A Farewell To Arns</cite> in February.
<enmpThe di scussion on <cite>Catch-22</cite> has been
moved to the March neeting. </ enp</ p>

The American literature discussion group will be reading A
Farewell To Arms in February. The discussion on Catch-22 has been
moved to the March meeting.

Similar contextual selectors can control the style of lists located within an
item in another list (ul li ul {...}) or a paragraph within a certain class of div
element (div.newsflash p {...}).

Pseudo-classes and pseudo-elements. \Web browsers traditionally have
used typographical cues to distinguish among HTML anchor elements
(<a>...) that were hyperlinks from those that were named anchors in the

Complete or nearly
complete CSS1 support is
available in Internet
Explorer 5.x and 6.x,
Mozilla (including Netscape
6 and 7), and Opera.

By design, CSS cannot
affect the display of
browsers with no support
for it. Several browsers
have attempted to interpret
CSS but they handle it with
serious errors. Netscape
4.x is the most prominent of
these examples.

A contextual selector title
rule is available in CSS1.
The CSS2 standard
defines several other
contexts at www.w3.org/
TR/REC-CSS2/
selector.html, but these
contexts are not as widely
supported by current
browsers.

The div element marks a
generic block of text, or
division, within a document.
It can contain other block
elements such as
paragraphs and lists, making
it a useful tool to identify and
apply styles to an entire
section of a document.

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

document, and to distinguish among visited and unvisited hyperlinks. CSS
addresses these differences by establishing pseudo-classes for anchors that
are links and more specifically visited links, links the user’s mouse pointer is
hovering over, and any active links the browser is in the process of connect-
ing to. The syntax for these pseudo-classes is:

a:link {.}
a:visited {.}
a: hover {.}
a:active {.}

Pseudo classes can be combined with normal classes and contextual selectors:

a:link { background: white; color: blue }
a.nav-bar:link { background: navy; color: yellow}

di v. newsfl ash a:link, div.newsflash a:visited { font-
wei ght: bold; }

In some publishing environments, applying different styles to the first letter
or first line of some blocks of text is common. CSS applies style rules to first
letters and lines through two pseudo-elements, “:first-letter” and “first-
line.” These names are appended to normal selector names:

p.section-leader:first-letter { font-size: 200% }
p.section-leader:first-line { font-variant: snall-caps;

}

For the first-line pseudo-element, the browser determines where the first
line of an element ends; the author does not need to estimate line lengths.

Properties are the typographical controls that make up the rules applied to
each selector. Each property has sets of allowable values defined in the
specification. Examples might include:

font-famly: “Trebuchet M5, Arial, sans-serif;
font-size: small;

margi n-l eft: 2em

color: white;

background: navy;

text-align: right;

I i ne-height: 120%

A sample stylesheet might look like this:

/* This is a comment */

body {

col or: bl ack;

background: white;

font-famly: Georgia, “Tinmes New Ronan”, serif;
margi n-left: 4em
}
/* The following rule applies to all hl, h2, and h3
el ements */

hl, h2, h3 {

color: white

background: #009;

font-famly: “Trebuchet M5, Arial, sans-serif;
margin-left: -2em

}

These rules first establish a style for the document’s <body> element. A
principle of CSS is that children elements inherit many of their parents’
styles. Every element in a document’s body is either a child of the <body>
element or of another descendent of <body>, and so inherits the style
settings for <body>.

The first style rule in the previous coding includes a list of suggested fonts to
use, in order of the author’s preference. In this case, the rule says that the
body will display with black text on a white background, using the font
Georgia if it is available, and if not using Times New Roman. If Times New
Roman is unavailable, the browser the system'’s default serif font.

The document will have a left margin 4 ems in size. (From typography, an em
is a unit of length equal to the vertical distance from the top of letters such
as "k" or “P" to the bottoms of letters such as “j"” or “p".)

Predicting what fonts are available on a user’s systemis never completely possible. If an
author wantsto suggest a serif font such as Georgia or Times New Roman, the generic serif
font name still selectsa similar serif font if these specific fonts are unavailable. Likewise, if
text is set in a sans-serif font such as Trebuchet MS or Arial, the sans-serif generic
name selects a similar font if neither of those named fonts is available. If no generic
font name is specified, browsers use their default font.

An exception to this inheritance is established for first- through third-level
headers. They will display with white text on a dark blue background, with a
preferred font of Trebuchet MS if it is available, then Arial, then the system’s
default sans-serif font.

Colors and backgrounds. CSS can describe colors of text, background, or
borders around elements. It supports several color-naming syntaxes. The
simplest naming syntax, but least flexible, is to use one of 16 defined key-
words: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive,
purple, red, silver, teal, white, and yellow.

The other four color-naming schemes all use the computer graphics model of
defining colors by their relative amounts of red, green, and blue. The first
scheme, familiar to Web authors who have set colors with the HTML
element, is a six-digit hexadecimal number.

The first two digits specify the relative amount of red, the next two specify
the amount of green, and the final two the amount of blue. Each pair of
digits runs from 00 to FF, making black #000000 and white #FFFFFF; a me-
dium blue would be #000090. A second, similar scheme is to use one hexa-
decimal character per color, making black #000 and white #FFF; a medium
red would be #F00.

The third color scheme describes the levels of red, blue, and green in a decimal
number running from 0 to 255; this number is simply a decimal version of the
six-digit hexadecimal system. The syntax for this naming scheme is rgb(x, x, x):
black is rgb(0, 0, 0), white is rgh(255, 255, 255), and a dark green would be
rgb(0, 40, 0). The final color scheme is similar to this but expresses each value as
a percentage. Black is rgh(0%, 0%, 0%), white is rgb(100%, 100%, 100%), and a
bright yellow would be rgb(100%, 100%, 0%).

Percentages. Expressing a measurement as a percentage is conceptually
simple but can be made slightly more complex in CSS because different style
properties are set in percentages of different source values. For example:

Elements have a parent-
child relationship if one
directly contains another. For
example, in the code
“<p>This is
very
important. </p>” the
element is the child of <p>
and <p> is the parent of
. The
element is the child of
and is the parent of
.

CSS provides many style
properties; they comprise
the bulk of the language. All
good tutorials describe
them in more detail,
including
www.htmlhelp.com/
reference/css and
www.w3schools.com/css.
Another good CSS
resource is the Style Sheet
Reference Guide at
www.webreview.com/style,
which includes a master
compatibility chart showing
which versions of browsers
support any specific CSS
property.

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

body { margin-left: 10% }

/* Establishes a left-hand margin that is 10% of
the avail abl e page wi dth */

p { line-height: 200% }

/* Establishes a |line height that is 200% of the
elenment’s font size */

ul i { font-size: 95% }

/* Establishes a font size that is 95% of the

el ement’s parent’s font size */

The CSS standard or a good CSS tutorial makes clear what the percentage is
being calculated against for each property.

Lengths and font sizes. Lengths also add complexity to style proper-
ties and occasionally add controversy. One problem is that the standard
supports both absolute and relative measurements. Absolute measure-
ments include inches, centimeters, millimeters, points (1/72 of an inch),
and picas (1/6 of an inch).

Use of these measurements inevitably requires making assumptions about
the output device that will be used to display or print a page, and Web
managers cannot know that information. Absolute measurements also raise
accessibility problems, because some users need to have fonts set at certain
sizes just to be readable. Complicating this problem is the fact that Internet
Explorer doesn’t allow users to increase or decrease font sizes that have been
set with absolute values.

CSS provides two lengths that are calculated from the current font size,
making them relative to the user’s font preferences. Both length specifica-
tions reflect recognized standards from the field of typography. The first is
the em, a unit of length equal to the vertical distance from the top of letters
such as k or P to the bottoms of letters such as j or p. The em is often mistak-
enly defined as a length equivalent to a font’s capital letter M. This measure-
ment may or may not be a similar, depending on the font.

The second relative length is the x-height or ex, a measurement equal to the
height of a lowercase letter x. For purposes of on-screen readability, many
fonts designed for online use have greater x-heights than fonts designed for
print. This design means, for example, that font sizes of Verdana and Times
New Roman that have the same em size have difference ex sizes.

Applying CSS

Two common errors affect the validation process for linked stylesheets and prevent stan-
dards-compliant browsers, including Mozlla and Netscape 6 and 7, from applying them
correctly. First, a standalone stylesheet must include only CSSand no HTML markup. In
particular, the HTML comments often used to hide embedded stylesheets fromolder brows-
ers must be eliminated. Second, Web server software must send CSS stylesheets with a
MIME content type of “text/css.” Most newer servers send the correct MIME type, but
some older ones may incorrectly send CSSfilesas “ text/plain.” Apache servers typically
configure MIME content types though their conf/mime.types files. I1S inherits the MIME
types associated with file extensions by the server’s operating system.

Style rules can be associated with HTML markup in three locations. First,
a linked stylesheet can stand on its own as a separate file, on either the

same Web server or a different one. This external file is then referenced
in the HTML page by a link element in the document’s head element,
explicitly describing the related document as a spreadsheet with a MIME
type of “text/css":

<link rel ="styl esheet” type="text/css” href="/styl es/
mai n-styl e.css”>

This syntax allows one stylesheet to affect appearance for all the pages on a
website, or several websites, or in fact anywhere on the Web. A single
revision to this stylesheet is immediately applied to all pages referencing it.

A stylesheet can also be embedded into an HTML document'’s head element.
In this case, the entire stylesheet is written into the HTML document and
applies only to the page containing it:

<style type="text/css”"><!—

p. dat abase-description {
margi n-l eft: 2em
font-size: 95%

}

—</styl e>

Linked or embedded stylesheets can import other stylesheets in their entirety
with an “@import” statement. If used, this statement must appear at the
beginning of the stylesheet, before any style rules:

<style type="text/css”"><!—
@nport url (http://central.server.org/ main-style.css);
p. caution {

color: yellow

background: navy;

}

—</styl e>

Style rules also can be applied to individual elements with inline styles. These
are rules applied via the style attribute allowed on most HTML elements:

<p style="border: thin solid red”>..</p>

The CSS standard was written with the assumption that users would be able
to create and apply their own stylesheets, in conjunction with or instead of
the author’s stylesheets. These stylesheets are typically selected through
browser configuration settings and are not written into HTML pages.

With multiple ways to associate style rules with HTML, finding more than one
stylesheet setting competing styles for a given HTML element is not uncom-
mon. The standard determines which style to apply by establishing priorities
for each rule. This priority order is the cascade in cascading stylesheets. When
multiple rules are set, as in the CSS2 rule, the browser must:

e First, sort by weight and origin. Properties may be explicitly labeled In CSS1, author styles
important: User-supplied important styles take precedence, followed by AR (S [pTE R e
author-supplied important styles, then author-supplied styles with over user styles.
normal weight, and then user-supplied styles with normal weight.

e Second, sort by specificity of the selector. Specificity is a calculation based
on the number of elements, classes, and ID attributes addressed by a style
rule. The smaller this number, the higher the priority of the style rule.

e Finally, sort by the order in which the rules are specified. When all other
priorities are equal, the rule set last takes precedence. Imported rules are

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

Netscape 6 and Netscape
7, both based on the open-
source Mozilla browser,
have excellent support for
the CSS standard.

The many problems
Netscape 4 has in supporting
basic CSS rules are
documented at
www.webreview.com/style/
css1/charts/mastergrid.shtml
and http://css.nu/pointers/
bugs-nn.html#NN4.

considered to come before all the rules written into the stylesheet itself,
and therefore have lower priority.

The Netscape 4 problem

By design, CSS is invisible to browsers that do not support it. In browsers
with no CSS support at all, style properties set for a given element are
ignored, and the user is shown the browser’s default display for that ele-
ment. Problems arise, however, with browsers that attempt to support CSS
but do so with serious errors.

The most prominent of these browsers is Netscape 4. In user populations
where this browser is still commonly used, these errors can discourage
authors from using CSS at all. Note that for many CSS properties, the
problem is not that Netscape 4 fails to implement support for a CSS rule,
but implements it incorrectly; for example, Netscape 4 often miscalcu-
lates changes to font sizes, or applies those changes cumulatively rather
than just once.

Few Web managers, though, can afford to abandon support for Netscape 4.
How then can a website use modern stylesheets, understood by the great
majority of browsers in use, without causing serious display problems on an
aging but still relatively common browser? Netscape 4's own weak support
for the CSS standard protects it from seeing style rules that would cause it to
display a page incorrectly.

The most straightforward way of hiding style rules from Netscape 4 is to
create one stylesheet with only the most basic rules, known to be supported
in Netscape, and then import a second stylesheet with rules requiring much
closer compliance with the standard. The CSS standard requires imported
stylesheets be defined first in a new stylesheet, so an example might be:

/* Detailed CSS stylesheet inported for

st andar d- conpliant browsers — the foll ow ng
line is not understood by Netscape 4 */
@nport url (full-style.css)

/* Basic colors. Include TD and TH because

Net scape 4 fails to let table cells inherit
styles fromthe BODY el ement */

body, td, th {

background: white;

col or: bl ack;

font-famly: Georgia, “Tinmes New Ronan”, serif;

}

The bulk of the style rules for this page would then actually appear in the
file "full-style.css.”

A second method takes advantage of media-specific stylesheets. The CSS
examples shown so far would be applied equally to on-screen displays,
printed pages, and less common media such as speech synthesizers, Braille
displays, and projectors. CSS2 provides mechanisms to apply style rules to all,
one, or any combination of supported media, allowing, for example, details
of on-screen display to be altered for printouts. Media-specific style rules are
also hidden from Netscape 4, because Netscape 4 does not support rules that
apply only to certain output media.

The simplest way to include media-specific rules is with the “@media”
statement:

@redi a screen {
em highlight {
font-style: nornal;
col or: bl ack;
background: yell ow;
}

}

@redi a print {
em hi ghlight {
font-style: italic;
col or: bl ack;
background: white;
}

}

Another use for this media-specific rules is to suppress certain sections of
HTML that do not make sense in certain media:

@redia print {
tabl e. navi gati onal -tabs {
di spl ay: none;
}

}

Working with HTTP

HTTP is the Web’s communications standard. The standard defines the ways
that browsers and other applications make requests to servers and the ways
that servers respond to those requests.

HTTP: Hypertext transfer
protocol

Working with static HTML documents requires no interaction with HTTP.
Authors simply put their documents in place and rely on the server’s default HTTP 14 standard
settings to deliver the content correctly. ftp:/fftp.isi.edufin-

. notes.rdc2616.txt
Web managers working with server configurations or dynamic pages,

however, need to understand at least the basics of both HTTP requests and
HTTP responses. With some dynamic page technologies, including CGl,
scripts must provide some or all the HTTP headers the server needs to
respond to the request.

A typical set of request headers may look like this set, generated by a link to
http://sunsite.berkeley.edu:

GET / HTTP/ 1.0

Host: sunsite. berkel ey. edu

Accept: text/htm, text/plain, text/sgm, */*;g=0.01
Accept - Encodi ng: gzip, conpress

Accept - Language: en

User-Agent: Lynx/2.8.4pre.2 |ibwwFM 2. 14

In order, these headers send the request for the server homepage (the slash)
using HTTP version 1.0; the host name from which the document is re-
quested, allowing the server to house multiple virtual hosts and serve differ-
ent content depending on the host requested; the MIME types, document
encodings or compression types, and languages the browser supports, listed

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

By default, HTTP 1.1
connections close as soon
as the document is
transmitted. Browsers and
servers that are fully
compatible with HTTP 1.1
can establish a connection
that remains open for
subsequent requests, such
as those needed for inline
images, resulting in more
efficient use of network
resources.

A source of confusion about
content types is the fact that
Internet Explorer, in violation
of the HTTP standard,
second-guesses many
common content types. For
example, a URI with a type
of “text/plain” is required to
be treated as plain text, but
IE examines its contents,
and, if it decides the file
appears to consist of HTML,
renders it as an HTML
document.

in order of preference; and the User-Agent string provided by the browser to
identify itself.

In response, the server sends:

HTTP/ 1.1 200 K

Date: Sat, 02 Nov 2002 19:07:59 GMVIr
Server: Apache/1.3.26 (Unix) tontat/1.0
Connection: cl ose

Cont ent - Type: text/htn

<HTM.>...

In order, these headers show the browser that the response uses HTTP 1.1
and results in a 200 (OK) status; the date and time on the server; the server’s
software and version; the HTTP 1.1 connection type; and the following
document’s MIME type. A blank line indicates the end of the HTTP headers
and the beginning of document content.

A complete description of all HTTP headers is available in the specification.
Headers most relevant to website management include:

Request methods. The first header sent by the browser begins with a
request method. For static pages, this method is almost always GET, which
simply retrieves the document specified; scripts can use the GET method,
with variables and values specified in the document’s query string, or the
part of a URL following a question mark. Other common methods are POST,
in which form inputs are sent in a message body following the request
headers, allowing for longer blocks of input data; and HEAD, which is the
same as GET but returns only the HTTP headers and not the document
content, allowing programs to check a document’s status without having to
retrieve it in its entirety. Scripts can alter their behavior based on the request
method used. For example, the same script can print out an HTML form
when requested with GET, and then process the results of that form when
requested with POST.

MIME types. HTTP does not use the concepts of files and file types, but
rather of streams of data identified with a certain Multipurpose Internet mail
extensions (MIME) content type. MIME is a standard for encoding any com-
puter data for transmission on the Internet; encoded data are always identi-
fied by their major type (common types are text, image, or application) and
specific subtype (.html, .jpeg, or .pdf). Types and subtypes are separated by a
slash, making the header for HTML data “Content-type: text/html.”

When addressing static files, a server usually determines content types based
on file names or extensions. An example is sending all files ending in .jpg
with a content type of “image/jpeg,” But dynamic page technologies, which
can be used to deliver any type of content, can set explicit content types. CGI
scripts must always include a content type, but PHP, for example, must
include it only if it's something other than “text/html.”

Many Web managers have been taught that browsers always offer to save
documents to a file rather than display them if the documents are sent with
a content type of “application/octet-stream.” This technique is often used by
library databases to download search results. But defining application/octet-
stream as the content type that make a browser save the file is inexact.

The MIME standard defines the stream as binary data of unknown type, and
the HTTP standard suggests but does not require that application/octet-
stream result in an option to save it to a file. This content type is one that

Internet Explorer examines to determine if it is a known format. Internet
Explorer therefore displays plain text or HTML delivered as application/octet-
stream instead of automatically offering to save it.

Instead of relying solely on this content type to open a “Save As...” prompt,
Web managers should use the prompt with the Content-Disposition header,
which is HTTP’s mechanism for telling the browser to do something other
than display document content. These headers tell a compliant browser that
the following document content is plain text, but give the user a way to
save the document, offering “search-results.txt” as a default filename,
instead of displaying it:

Content-Type: text/plain
Content-Di sposition: attachnent; fil enanme=
"search-results.txt”

Accept headers. As shown in the sample request headers above, browsers
send several prioritized lists of preferences. The Accept header lists MIME
types the browser is prepared to accept. A dynamic page with copies of an
image in several different formats could use this header to determine
whether to send a PNG or GIF version, for example. Different content types
can be prioritized with a qvalue attribute assigning a preference level be-
tween a maximum default value of 1 and a minimum of 0.

Similarly, the Accept-Language header expresses a user’s language preferences
using a standard list of two-letter codes for languages. Servers or scripts that
respond to this header can allow multilingual sites to make informed guesses
about which document versions to display by default. Where English and
Spanish versions of a document are both available, a dynamic page could view
this Accept-Language header and decide to send the English version:

Accept - Language: en; g=0.5 es

The following header, on other the hand, establishes a first language prefer-
ence of Portuguese, followed by Spanish, and then English. The same dy-
namic page could check if a Portuguese version was available; if not, it would
send the Spanish version:

Accept - Language: pt; q=0.8 es; g=0.5 en

In addition to dynamic page technologies making decisions based on Accept
headers, the Apache server itself can be configured to identify and serve
alternate versions of documents based on these headers. The advantage to
using the server itself to react to accept headers is that authors can provide
multilingual or multiformat options without needing to use or know any
dynamic page technologies.

Cookies. A cookie is a short string of text, in the form “name=value.”
Cookies have some features that are unique in HTTP. A basic problem in
creating information services using HTTP is that HTTP is stateless: once it
finishes sending a document and closes a connection, it has no mechanism
to associate the same user’s next request with the previous one. Stateless-
ness prevents HTTP, by itself, from managing user sessions in any service that
requires knowledge of the history of the user’s requests.

This issue can be addressed in several ways. Some services use dynamic
pages that maintain information on the server about what is happening,
for example, in each search session. These pages associate an ID number
with each session and use that ID number in all URLs. Other simpler
services write only enough information into each URL to be able to
reconstruct the user’s location on each request.

Portable network graphics
(PNG) is a file format
supported by all major
graphical browsers that is
patent- and royalty-free and
supports up to 16 million
colors.

Graphic interchange
format (GIF) is limited to
256 colors. Its compression
algorithm is a patent owned
by Unisys, which charges
software developers
royalties for adding functions
such as “Save as GIF.”

Content negotiation is
described at http:/
httpd.apache.org/docs-2.0/
content-negotiation.html.

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

Uniform Resource
Identifier (URI) is the
generic term for names that
identify Web resources. A
URL (Uniform Resource
Locator) is a specific kind of
URI that includes a protocol

Cookies also can keep each user associated with server sessions, among other
tasks. Although some browsers allow JavaScript code to set cookie values,
most services set them with HTTP headers.

What makes the Cookie header unique is that the server may send it to the
browser along with directives specifying what pages, or domain, it should be
sent back to, and an expiration date until which the browser should send
back the cookie. That header, sent as part of a server’s response, would be:

Set - Cooki e: User| D=12345; donmi n="/search”;
expires= Fri, 01-Jan-2010 00:00: 00 Gvr

A browser that accepts this cookie stores its value and continues to send it
back to the specified pages until its expiration date, which may be years in
the future. All subsequent requests to pages on the same server, in the "/
search” directory, will include this header:

Cooki e: User| D=12345

Web managers have often set unique cookie values for any browser that
requests documents without already having that cookie; that browser’s
future use of the site can be tracked by logging all requests accompanied by
that cookie.

Although cookies can maintain session information and provide long-term
tracking of usage patterns, growing numbers of users perceive overuse of
cookies as an invasion of their privacy. Both newer browsers and third-party
software give users flexibility in controlling what cookies their browsers
store, and for how long. Web managers cannot fairly assume that cookies
they set will be accepted, and in designing services must make allowances
for users who do not return cookies set by the server.

Status codes and link checking. All responses to HTTP requests begin
with a line that includes a three-digit code indicating the status of the
response. These codes indicate whether the requested document was found
and can be sent, or if it was moved to a new location, or if some error
prevented the server from sending it.

Understanding status codes assists Web managers in several ways. Set-
ting up server configurations and dynamic pages often requires setting
certain URIs to send specific status codes, especially when pages redirect
users to other locations. Status codes also are included in server log files,
making possible the finding of all requests made to the server for pages
that do not exist. Status codes also report on the availability of pages
linked to on other servers.

Most websites maintain links to external resources, and the Web’s nature
is that these resources may move or go out of existence. Many Web
managers make a regular task of ensuring all their links still point to the
correct resource.

To a large extent, this check can be automated by programs that view a local
page, or crawl through all the pages on the local site, compile lists of exter-
nal links, and then check the status of all the pages linked to by the local
pages. Although these programs may report additional data, the primary
piece of information they collect from each page is its HTTP status code.

Status codes are divided into groups, identifiable by their first digit. 1xx
codes accompany informational message; 2xx codes indicate a successful
status; 3xx codes indicate that a redirection to another location; 4xx codes
indicate an error originated on the browser’s end of the request; and 5xx

errors indicate a problem on the server itself. Full details are found in the
specification, but several are important in the context of link checking.

The 200 ("OK") code indicates the requested document was found and can
be sent. The 301 (Moved Permanently) and 302 (Found) headers both indi-
cate that requested document has moved, and both are accompanied by a
Location header giving the new URL. The 302 status indicates a temporary
redirection, but as the name implies the 301 redirection indicates the re-
quested document has been permanently relocated.

Link checkers include in their reports both the current URL and its new
location, so the document making the link can be updated. The 301 status
also causes most Web crawlers and indexes to drop the old location and
index the new one instead, and some browsers (notably Internet Explorer)
automatically update user bookmarks when a requested document returns a
301 status.

Link checkers also report any 4xx codes received, especially the 404 (Not
Found) code. This common code indicates the server currently has no docu-
ment matching the one requested, and usually indicates a page, or an entire
site, has moved without establishing 301 redirects to the new location.

Because link checkers and other automated HTTP applications rely so heavily
on accurate status codes, Web managers must not move their own pages or
sites using only warning messages intended for human readers. A page that
returns a 200 status, but reads “We have moved...” cannot be relied on to
update links on other sites.

Many Web managers coordinate moves in several phases, with a first phase
using “"We have moved"” messages for users, and a later phase relying on 301
redirects for automated scripts. This later phase may need to last for a year or
more to ensure that links on other sites do not take a significant number of
users to the dead end of a 404 message.

I deally, Web manager s should seldomor never changethe URIsfor their pages. Both Apache
and lIS allow managers to reorganize or move directory structures on the server and still
associate their original URIswith the new locations. Breaking users' links and bookmarks
simply to reflect internal organizational changesin a new URI is never responsible.

Cache control. The current HTTP version, HTTP 1.1, devotes much attention
to the ways documents can be requested and delivered through a string of
proxy or cache servers. For example, a browser can go through these steps:

1. Check its own cache of the user’s recently accessed documents.

2. Access the Internet through an office firewall that caches documents
received by everyone in the office.

3. Connect outward again through an Internet service provider with an-
other cache keeping recent copies of documents requested by all sub-
scribers.

4. Contact the server where the document originates.

Because communication with any of these caches is typically faster than
communication with the originating server, caches often provide a perfor-
mance benefit to users: every page retrieved from a cache appears to the
user to be delivered faster than pages from the server.

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

Having multiple copies of a document available, however, with the potential
for each copy to have been retrieved at different times, leads to problems
when the original document'’s content changes regularly. Discrepancies
among these versions can be especially problematic for dynamic pages,
where the same URL may provide different content almost every time it is
viewed. Fortunately, these pages have the greatest ability to set their own
HTTP header to control cache behavior.

HTTP 1.1's Cache-Control header provides flexible control over cache behav-
ior. This header can specify that content may be cached, may not be cached,
or may be cached only in individual user’s caches but not in shared caches (or
vice versa), or cached only until a certain time. The simplest form of this
header signals all caches handling a response that they are not allowed to
retain a copy.

Cache- Control : no-cache

HTTP 1.0 provided only a single option for cache control: “ Pragma: no-cache” . Itsmean-
ing isidentical to “ Cache-Control: no-cache.” To control the small number of HTTP 1.0
browsers and caches till in use, VWeb managers may choose to send both of these headers
with pages that should not be cached.

If a page’s output is tailored for individual users but does not change fre-
quently, Web managers may choose to let individuals store copies in their
personal caches—usually a browser component—but prevent copies from
being stored in multiuser caches. HTTP refers to these two kinds of caches as
private and public. Pages available for private caches only carry this header:

Cache-Control : private

When a page's output changes frequently but not constantly, Web manag-
ers can choose to let caches store a copy for a limited time. The maxi-
mum age of copies to be kept in caches can be set, in seconds. This header
indicates that the page being sent should be cached for no more than
one hour (3,600 seconds):

Cache- Control : nmax-age=3600

Pages that should be cached only until a certain date should be sent with an
Expires header, which specifies the date beyond which the cached copy
should be replaced with a fresh copy from the server:

Expires: Fri 28 Nov 2003 16: 00: 00 GV

