CGI ENVIRONMENT VARIABLES

The original specification for the Common Gateway Interface (CGl) established
a list of environment variables, or aspects of the server and of the user’s connec-
tion that would always be made known to CGl scripts. These variables remain a
basic part of writing CGl scripts and have also been adopted in other server-side
scripting languages, including server-side includes, ASP, and PHP.

This list of the CGl environment variables below is annotated.
SERVER_SOFTWARE

The name and complete version information of the Web server software.
Some server-side software adds itself to SERVER_SOFTWARE string. For
example, Apache/1.3.26 (Unix) PHP/4.2.3.

SERVER_NAME

The server’s domain name or IP address.
GATEWAY_INTERFACE

The version of the CGl specification in use. For example, CGI/1.1.

CGl scripts are executable programs that can also be run as command-line
programs on the server. The script can use the presence of a
GATEWAY_INTERFACE environment variable to determine that it is being run
as a CGl script.

SERVER_PROTOCOL

The communications protocol and version number used to request the script.
For example, HTTP/1.1.

SERVER_PORT

The port number to which the request was sent. Sites running Web services
on ports other than the default of 80 may want scripts to behave differently
for users on different ports.

REQUEST_METHOD
The HTTP method used for the request. For example, GET or POST.

A common use of this variable is have one script handle both the job of
displaying a form to the user and of handling the form’s submission. If the
REQUEST_METHOD is GET, the script writes out a form with a method at-
tribute of POST and an action of its own SCRIPT_NAME (see below). If the
REQUEST_METHOD is POST it processes the form submission and then either
displays results or redirects the user to the appropriate exit page.

PATH_INFO

Directory path information added to the name of a script. If a request is
made as [script name]/alpha/beta.pdf the PATH_INFO is /alpha/beta.pdf. This
may or may not refer to an actual alpha subdirectory under the script'’s
location, with an actual beta.pdf file in it.

Using PATH_INFO allows scripts to sit in the middle of a URI, making transpar-
ent to users that a script is even at work. This transparency makes possible
upgrading services from collections of HTML documents to database-driven
dynamic services. For example, a site may maintain a small set of help docu-
ments with URIs such as /help-docs/keyword-searching.html or /help-docs/

Appendix A

The complete CGI
specification, http:/
hoohoo.ncsa.uiuc.edu/cgi/
interface.html

spoday ABojouyda) Aieiqn

6JO'E|9'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

Uniform Resource
Identifier (URI) is the part of
a URL that comes after http:/
[server.somewhere.org/ and
is the part that the server
actually receives as the
user’s request.

sorting-results.html. When the help documents grow in number, or need to
be customized on the fly, the help-docs directory can be replaced by a script
named help-docs that customizes its output depending on the PATH_INFO
value. The actual URL for the individual help documents does not change.

PATH_TRANSLATED

In cases where a PATH_INFO value corresponds to an actual file path on the
server, it will be relative to the server’'s document root. PATH_TRANSLATED
shows the physical directory path on the server.

SCRIPT_NAME

The URI of the script, up to but not including any question mark. So a
request of /ejournals/titles/alpha-sort.cgi?letter=J has a SCRIPT_NAME of/
ejournals/titles/alpha-sort.cgi. Scripts that write out HTML with links back to
themselves can use SCRIPT_NAME instead of a hard-wired value; if these
scripts are ever moved to different locations, the links would not break.

QUERY_STRING

The part of a URI coming after any question mark. In /ejournals/titles/alpha-
sort.cgi?letter=J the QUERY_STRING is letter=J.

For forms submitted by the GET method, the CGl specification and most
scripting languages expect the QUERY_STRING to provide the form's input
names and their values in the syntax ?name1=value1&name2=value2....

AUTH_TYPE

If the request was made with a type of user authentication, AUTH_TYPE shows
the authentication system used. In typical Web practice, the authentication
system almost always is Basic. Apache and recent versions of IIS also support a
standard called Digest authentication, which encrypts passwords, and Basic
authentication sends passwords in the clear making it more secure. Unfortu-
nately, browser support has been poor, so Basic authentication remains the
nearly universal system for username/password access on the Web.

REMOTE_USER

If the request was made with user authentication, this variable will contain
the username provided. For security reasons, the user’s password is not
available to scripts.

REMOTE_IDENT

A user identity provided by the authentication system described in RFC 1413.
This variable is not widely used.

CONTENT_TYPE

For queries with a REQUEST_METHOD that supplies incoming data, this
variable contains the MIME content type of that data. For example, form
data being submitted with a POST method typically has a content type of
application/x-www-form-urlencoded.

CONTENT_LENGTH

For queries with a REQUEST_METHOD that supplies incoming data, this
variable is the length of that data in bytes. The CONTENT_LENGTH value can
be compared with the actual length of data received to confirm that the
submission was completely received.

In addition to these variables from the official CGl specification, servers may
make other variables available to scripts. These variable below are some of

the most common, but their availability and the availability of still other
variables depends not only on the server involved, but the version. Server
documentation provides a complete list.

REMOTE_ADDR

The user’s IP address, as seen by the server. This variable may be the address
of a proxy, gateway, or firewall making the request on behalf of the user,
whose actual IP address remains unknown. Available in Apache and IIS.

URL / REQUEST_URI

The requested URL, up to but not including any question mark. This variable
is often the same as SCRIPT_NAME. Available as URL in IIS and as
REQUEST_URI in Apache.

PATH

The list of directories on the server that are automatically searched when a
script requests another program be run.

SERVER_ADDR
The server's IP address. Available in Apache.
SERVER_NAME

The server’s domain name. Available in Apache and IIS; if the server does not
have a domain name, IIS assigns the IP address to SERVER_NAME.

SERVER_ADMIN

The e-mail address of the Web server administrator, as assigned in the server
configuration files. Available in Apache.

The CGl specification also requires that a server make all HTTP headers sent
by the user available to scripts. The environment variables are given the
name HTTP_[Header Name], with the header name converted to all capital
letters and hyphens changed to underscores. For example, the value of the
User-Agent header is HTTP_USER_AGENT.

Several HTTP headers values are commonly used by scripts:
HTTP_ACCEPT

The Accept header is intended as a way for the browser to send a prioritized
list of MIME types it will accept. In practice, it is seldom used, but it could be
used to determine whether to output images in PNG or GIF format, for
example.

HTTP_ACCEPT_LANGUAGE

The Accept-Language header provides a list of preferred languages, using
the ISO’s standard abbreviations for languages and dialects. Scripts on a
bilingual site could default to English if the first language listed is “en” and
to Spanish if the first language is “es.” Web managers should be aware that
users may not always configure their browsers to send an accurate set of
language preferences, so any default taken from Accept-Language should
allow the user to select other available languages in the interface.

HTTP_COOKIE

Most scripting languages have simplified access to cookie values, but ulti-
mately they all come from what the browser sends in its Cookie header. Web
managers should be aware that browsers and third-party software increas-
ingly give users control over which cookies to accept, keep, and send back to

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

servers. In addition, sufficiently motivated hackers can send any cookies and
values they choose, so using cookies to determine whether a user may access
a resource is poor security.

HTTP_REFERER

The Referer header provides the URL of the page from which the user
followed a link to the current page. When the user follows a bookmark or
enters a page’s URL manually, the HTTP specification requires that the no
referer value be sent. Some browsers can be configured not to send Referer
headers at all, and as with cookies, a determined hacker can send an arbi-
trary value, so security based on the Referer value is weak.

In the mid-1990s, the practice of browser sniffing by looking for specific User-Agent val-
ues was so entrenched that many pages failed to work if the User-Agent did not appear to
be Netscape 3 by including that browser’s internal name, Mozlla/3.0. To prevent being
excluded from these pages, Microsoft released Internet Explorer 3.0 with a User-Agent
string that included Mozlla/3.0 (Compatible). When Explorer’s Version 4 was released
shortly after Netscape 4, its User-Agent string included Mozlla/4.0 (Compatible). This
string has remained in Explorer to the present.

More recently, the open-source Mozilla 1.0 browser chose a User-Agent
string of “Mozilla 5.0” to prevent it being confused with Netscape 1.0. This
string is included in other browsers built on Mozilla, including current
versions of Netscape.

So Internet Explorer 6.0 tacitly claims to be compatible with Mozilla 4.0 and
Netscape 7 claims to be Mozilla 5.0.

HTTP_USER_AGENT

A user agent is software that makes HTTP requests on behalf of a user. In
most cases the user agent is a browser, but it also can be a proxy, firewall, or
software to collect pages automatically for offline browsing. The User-Agent
header provides a way for this software to identify itself and its version,
often with other information to identify the user’s operating system and in
some cases claims of compatibility with other user agents.

Over the years, many scripts have customized their output for different
browsers based on the User-Agent value. Yet again, determined users could
configure their browsers to send a misleading User-Agent value or no value
at all; many users also are behind proxy servers that send their own User-
Agent value. So scripts cannot reliably assume they know the user’s browser
and must make any browser-specific customizations with caution.

Appendix B

PARSING LOG FILES WITH PERL

Web server log files are lists of predictably formatted lines of text. For needs
that are more specific than the reporting abilities of log analyzer programs
can support, Web managers often turn to system commands or short scripts
to find exactly what they are looking for. Tools such as the Grep command in
Unix and Linux, or the command-line Find command in Windows can select
and print out log file lines based on relatively basic criteria.

Other commands, text editors, and scripting languages provide greater or
lesser capabilities for finding text, but many developers rely on the Perl
scripting language as the best tool available.

Perl is a complete programming language and this example is not offered as
a tutorial. Perl also provides multiple ways to do the same thing, so many
Web managers with Perl experience already have their own methods for
parsing log files.

The example below converts each line of an Apache-combined format log
file into a set of variable names, which can then be examined or manipulated
as needed. This particular example looks for any lines in the log file with
status codes corresponding to errors and displays a brief report showing the
page requested, the error status, and the URL of the referring page that
provided the link (unless the referer was logged with the blank value of “-").

The only real challenge Perl faces in parsing the combined log format is that,
although its fields are separated by spaces, fields such as the HTTP request
and User Agent contain spaces inside quotes. Simply splitting the line at each
space cannot predictably keep all the fields together.

A more reliable method is to use the quotewords routine that found in Perl’s
Text::Parse module, which is designed to do exactly what is needed here: split
a string of text at a certain character, or pattern of characters, unless that
pattern is inside quotes.

This example uses the Unix “#!"” syntax for specifying the Perl program on
the first line. Windows users will typically need to run this script as
“D:\perl\perl.exe [scriptname.pl].”

#!/ usr/ bi n/ perl

| og- parser. pl

One of many ways to parse lines fromthe conbi ned

logfile format, such as:

staff-pc-118.foo.org - - [11/Nov/2002: 18:33: 17 —0500]
“CGET /infolill-policy.html HTTP/1.1" 200 14316

“http://ww. ourlibrary.org/circulation. htm”

“QOpera 6.05"

To use this script, enter “log-parser.pl [log file]”
use the Text:: Parsewords nodule to get the quotewords
routine for intelligently handling quoted val ues

use Text:: ParseWrds;

while (<>) {

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

chop;

Separate the line into the follow ng val ues using

whi tespace (\s+) that is not inside quotes
($renote_host, $ident, $renmpte_user, $tine, $tinme_zone,
$request,

$stat us_code, $bytes_sent, $referrer, $user_agent) =
" ewords(‘\s+, 0, $);

Rermove the square brackets fromthe date and tine zone
$time =~ s/™M[//;
$tinme_zone =~ s/\]$//;

The following lines will vary dependi ng and specific
needs. This version report only on lines with 4xx and
5xx status codes.

if ($status_code >= 400) {

print “$request\n”;

print “Returns status code $status_code\n”;

If there is a real value for the referrer, print it.
if ($referrer ne “-") {
print “Referring page was $referrer\n”;

} else {

print “[No referring page was | ogged]\n”;
}

print “\n";

}

Appendix C

BIBLIOGRAPHY

Anonymous. 2002. Maximum Apache Security. Indianapolis: Sams Publishing.

Architectural and Transportation Barriers Compliance Board. Electronic and
Information Technology Accessibility Standards, Dec. 21, 2000. Available
from www.access-board.gov/sec508/508standards.htm.

Badre, Albert N. 2002. Shaping Web Usability: Interaction Design in Context.
Boston: Addison-Wesley.

Bahadur, Gary, Mike Shema. 2001. Improving Apache. Information Security
Magazine, April 2001. Available from www.infosecuritymag.com/articles/
april01/features1_web_server_sec.shtml.

Baron, David. Mozilla’s DOCTYPE Sniffing, July 10, 2002. Available from
www.mozilla.org/docs/web-developer/quirks/doctypes.html.

Battleson, Brenda, Austin Booth, and Jane Weintrop. 2001. Usability Testing
of an Academic Library Web Site: A Case Study. Journal of Academic
Librarianship 27, no. 3: 188-198.

Bos, Bert, Hakon W. Lie, Chris Lilley, and lan Jacobs. Cascading Style Sheets,
Level 2. May 12, 1998. Available from www.w3.org/TR/REC-CSS2.

Boutin, Paul. Web Standards for Hard Times, August 6, 2002. Available from
http://hotwired.lycos.com/webmonkey/02/33/index1a.html?tw=authoring.

Byerly, Suzanne L., Mary B. Chambers. 2002. Accessibility and Usability of
Web-Based Library Databases for Non-Visual Users. Library Hi Tech 20, no.
2: 169-178.

Chisolm, Wendy, Gregg Vanderheiden, and lan J. Jacobs. Web Content
Accessibility Guidelines 1.0, May,5, 1999. Available from www.w3.org/TR/
1999/WAI-WEBCONTENT-19990505.

Computer Incident Advisory Capability. U.S. DOE-CIAC Bulletins: Apache
Software Foundation, Oct. 7, 2002. Available from www.ciac.org/ciac/
bulletinsByType/vndr_apache_bulletins.html.

Computer Incident Advisory Capability. U.S. DOE-CIAC Bulletins: Microsoft
Corporation, Nov. 1, 2002. Available from www.ciac.org/ciac/
bulletinsByType/vndr_ms_bulletins.html.

Dickstein, Ruth, Vicki Mills. 2000. Usability Testing at the University of Ari-
zona Library: How the Let the Users in on the Design. Information Tech-
nology and Libraries 19, no. 3: 144-151.

DiNicolo, Dan. A Viable IIS Alternative? Apache 2.0 on Windows 2000. 2002.
Available from www.serverwatch.com/tutorials/article.php/
10825_1474251.

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1 (RFC2616). 1999.
Available from ftp://ftp.isi.edu/in-notes/rfc2626.txt.

Guenther, Kim. 2002. Web Site Management. Online 26, no. 3: 82.

Hudson, Laura. 2000. Radical Usability (Or, Why You Need To Stop Redesign-
ing Your Web Site). Library Computing 19, no. 1/2: 86-92.

Krug, Steve. 2000. Don‘t Make Me Think. Indianapolis: Que.

spoday ABojouyda) Aieiqn

6JO'E|E'93JHOSqDal'MMM

€002 Atenuqad - Aienuer

www.techsource.ala.org January - February 2003

Library Technology Reports

Lie, Hdkon W., Bert Bos. Cascading Style Sheets, Level 1, Jan. 11, 1999.
Available from www.w3.0rg/TR/REC-CSS1.

McMullen, Susan. 2001. Usability Testing in a Library Web Site Redesign
Project. Reference Services Review 29, no. 1: 7-22.

Nielsen, Jakob. Top Ten Guidelines for Homepage Usability. 2002. Available
from www.useit.com/alertbox/20020512.html.

Nielsen, Jakob. 2000. Designing Web Usability: The Practice of Simplicity.
Indianapolis: New Riders.

Norlin, Elaina, and CM! Winters. 2002. Usability Testing for Library Web Sites;
A Hands-On Guide. Chicago and London: American Library Association.

O’'Brien, Gerry. 2000. Microsoft IIS 5 Administration: The Authoritative
Solution. Indianapolis: Sams Publishing.

Raggett, Dave, Arnaud Le Hors, and lan Jacobs. HTML 4.01 Specification.
Dec. 24, 1999. Available from www.w3.org/TR/html4.

Silver, Lance. CSS Enhancements in Internet Explorer 6, March 2001. Available
from http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnie60/html/cssenhancements.asp.

Technical Overview of Internet Information Services (11S) 6.0. July 2002.
Available from www.microsoft.com/windows.netserver/docs/
IISOverview.doc.

Thatcher, Jim, Paul Bohman, Michael Burks, Shawn L. Henry, Bob Regan,
Sarah Swierenga, Mark D. Urban, and Cynthia D. Waddell. 2002. Con-
structing Accessible Web Sites. Birmingham, U.K.: Glasshaus.

W3C DOM Working Group. Document Object Model FAQ. 2001. Available
from www.w3.org/DOM/faq.html.

W3CHTML Working Group. XHTML 1.0: The Extensible HyperText Markup
Language (Second Edition). August 1, 2002. Available from www.w3.org/
TR/xhtml1.

Web Standards Project. Dreamweaver Task Force. 2002. Available from
www.webstandards.org/act/campaign/dwtf.

Zaner, John. 2001. Now That You’'ve Made Your Website, Where Will You
Host It? Tech Directions 60, no. 7: 16.

