Chapter 2

Examples of Web Services

Amazon and Google

chapter. This section is a bit more technical than

other parts of the report, but nontechnical readers
should not be intimidated by the programming code listed
in the examples. Even nonprogrammers should be able to
understand the gist of what these programs are trying to
accomplish without having to have a keen grasp on the
programming language. (I ask that programmers reading
this report to bear with my unsophisticated programming
style; more experienced programmers would write much
more elegant code than my admittedly awkward efforts.)

Real-world Web services will be examined in this

Amazon Web Services

Amazon, one of the most popular commercial online
businesses, offers a Web-service interface that provides
a number of interesting features. The possibilities range
from simple queries out of the Amazon catalogs to full-
fledged e-commerce Web sites that operate in partnership
with Amazon through the company’s Amazon affiliates
program.

Amazon.com has grown to be one of the most suc-
cessful businesses on the Web. The company quickly es-
tablished itself as a popular source for buying books on
the Web and has expanded to sell many other types of
products. In support of its extremely high-volume busi-
ness, Amazon has developed a sophisticated, scaleable, and
reliable technology infrastructure. On its own, Amazon is
extremely successful, but an important part of its business
strategy involves the company’s efforts to go beyond its
direct sales and to include affiliates and partners. For ex-
ample, Amazon allows other individuals and organizations
to make use of its infrastructure to sell their products and
services in return for it receiving a small commission on

each sale. This arrangement has proven to be beneficial for
both Amazon and its affiliates. An individual or business
can fairly easily set up his, her, or its own electronic store-
front; this storefront features the e-commerce capabilities
developed by Amazon, which would be much more difficult
and expensive to create independently.

The mechanism that Amazon uses for expanding its
online-business activities is based on Web services. Using
Web-service technologies described in this report, Amazon
Web Services (AWS) provide access to Amazon’s techni-
cal infrastructure. AWS can be implemented using either
SOAP or REST, but the majority of AWS implementations
follow the simpler REST approach.

In order to begin using AWS, one must first set up
an AWS developer account. Once registered, the user will
receive a subscription ID, which will be used as a key to
gain access when invoking Web services. Many of the Web
services offered by Amazon can be used for free, although
some require paid subscriptions or involve pay-per-use fees.

The core functionality of Amazon.com can be pro-
grammatically accessed through the Amazon E-Commerce
Service (ECS). Amazon does not charge for use of ECS,
though some restrictions apply regarding how information
retrieved from Amazon in this way may be used and the
number of transactions performed per second. (The WSDL
[Web Services Description Language] that describes the
ECS is available at: http://webservices.amazon.com/
AWSECommerceService/AWSECommerceService.wsdl.)

Amazon offers extensive tools and documentation
for building applications using AWS (http://aws.amazon
.com). There are also a number of books and other re-
sources available that provide extensive information on
implementing applications based on AWS.

In the following text, I'll construct a very simple ex-
ample that makes use of the Amazon Web Service (see

syioday ABojouyda) Aieiqi]

900z dunf—Aepy £i0"e|e'32IN0SYD3)} MMM

May—June 2006

www.techsource.ala.org

Library Technology Reports

appendix 3). The example will explain how the AWS func-
tions to dynamically execute a search on Amazon—with a
few lines of programming—to display the results.

Amazon E-Commerce Service
http://webservices.amazon.com/
AWSECommerceService/AWSECommerceService.wsdl

Amazon Web Services
http://aws.amazon.com

This, and most of the other examples in this report,
will use the Perl programming language, for no other rea-
son than it is the one with which I am most comfortable.
The platform for the examples consists of the following
components:

e An Intel-based server running Windows XP Pro-
fessional;

e The Perl programming language. (I will use ActivePerl
[available from ActiveState Software, Inc., www
.activestate.com] ActiveState makes ActivePerl freely
available and sells professional programming prod-
ucts and services);

The SOAP::Lite Perl module; and

The Internet Information Server (IIS) v5.0. This Web
server comes as an optional component of Windows
XP Professional.

A good resource for guidance in developing appli-
cations with AWS is Amazon Hacks by Paul Bausch.
The following example is loosely based on a program,
“Hack88: Program AWS with SOAP:Lite and Perl,” in
the book.

Building a Web-Service Client

Appendix 3 illustrates the Perl script that implements
a Web-service client, a SOAP interface, which is used
to send a service request to AWS, to perform an author
query, parse the service response, and display selected
elements on a Web page.

This script resides in a directory on the server that’s
configured to execute CGl-style programs. The value
of the author to search is passed on as a parameter
in the URL: www.family-photos.info/amazon-web-service
.pI?’Author=Marshall%20Breeding. When a Web browser
invokes this script, it produces the Web page shown in
appendix 4.

Breaking it down into steps may also help nontechni-
cal individuals understand the general components.

First, appendix 5 illustrates the code that “calls in”
some subroutines, which provide some general utility func-
tions available for setting up Web pages and user sessions

on a server. One of the subroutines available, &pagetop,
issues an HTML header and begins a Web page.

The next section shows how the code sets things up
to begin using SOAP, which will issue the request and re-
ceive the response. Perl::Lite supports WSDL, so it simply
points to the AmazonWebService.wsdl file that defines
the service and lets it do all the work of informing the
client about the data types, messages, methods, and bind-
ings that comprise the service.

Appendix 6 shows how the client will send a query to
AWS to search by author. In this figure, a variable—$que-
ry—is set up to pass the value of the query. The diglib-
common.pl file (see appendix 3) also contains the code
to parse parameters on the command line and puts them
into an associative array named fields. In the example in
appendix 6, $fields{ ‘Author’] will take the value “Marshall
Breeding” as specified in the Author=Marshall Breeding
component of the URL.

The next portion of the script, shown in appen-
dix 7, does the heavy lifting. It invokes the method
AuthorRequest defined in the WSDL and passes on the
appropriate parameters.

The AuthorRequest method in the Perl script corre-
sponds to the way the AuthorRequest data type has been
defined in the WSDL (appendix 8).

Once the service has been invoked and a response is
received, that data returned can be parsed and will display
the results, as implemented in the lines of Perl illustrated
in appendix 9.

This simple example illustrates how one can draw
information from a given resource and display that infor-
mation in an interface. Although Amazon.com certainly
looks much better than the simplistic interface demon-
strated, the point is that the user is now able to use the
content returned in whatever form his or her application
might need. The script in appendix 3 builds a Web page
that displays content from just the one source, but a more
interesting example might involve using Web services
from multiple sources. This is often called a mashup.

The GoogleSearch API

Google also provides a SOAP-based API for accessing its
resources in a model for Web services. The Google API
can be used to programmatically access several different
services, including executing a search on Google and re-
ceiving the results, requesting a spelling suggestion, and
fetching a cached page.

Just like Amazon, in order to use the Google Web API,
you must create a Google account and receive a key that is
passed with each request. Google provides information on
its APIs at www.google.com/apis/index.html. The WSDL
file that describes the Google Web API can be displayed
with this URL: http://api.google.com/GoogleSearch.wsdl.

Google Web AP/

www.google.com/apis/index.html

WSDL File Describing Google Web API
http://api.google.com/GoogleSearch.wsdl

ActiveState offers the Perl module GoogleSearch
.pm, which implements a SOAP interface to the methods
available in the Google API. Appendix 10 is based on the
ActiveState GoogleSearch.pm module. The GoogleSearch
.pm does not use the WSDL; rather the methods and data

structures known to exist in the API have been hard cod-
ed into the module, yet there are many similarities to the
Amazon search examples.

When invoked, the script creates a Web page such as
the one shown in appendix 11. Again, this demonstrates
how a user can programmatically access a remote service
using a Web service, obtain content from that service, and
display the content in the way the user desires.

The same results can be accomplished without
the GoogleSearch.pm Perl module. Instead, the user
would simply use SOAP::Lite directly and link it to the
GoogleSearch.wsdl. The alternate version of the script is
shown in appendix 12.

Appendix 3:
SOAP Interface Example

require “diglib-common.pl”;

&pagetop;

print “<h1>Amazon Web Service Example</h1>\n";
Amazon developer’s token

my $dev_token="xxxxx put your Amazon developer token here xxxxx’;

#Location of the Amazon WSDL file

my $amazon_wdsl = “http://soap.amazon.com/schemas2/AmazonWebServices.wsdl”;

use strict;
use SOAP::Lite;

my $query = “Marshall Breeding”;

#Construct a new SOAP::Lite instance
my $search = SOAP::Lite->service(“$amazon_wdsl”);

Execute Amazon Web Service
my $results = $search ->

AuthorSearchRequest(SOAP::Data->name(“AuthorSearchRequest”)

>type(“AuthorRequest”)
>value(\SOAP::Data->value(
SOAP::Data->name(“author” => $query),
SOAP::Data->name(“page” => “1”),
SOAP::Data->name(“mode” => “books”),
SOAP::Data->name(“type” => “lite”),
SOAP::Data->name(“devtag” => $dev_token)
)

);

print “<h2>Items on Amazon by Marshall Breeding</h2>\n";

Display results
foreach my $result (@{$results->{Details}}){
#print each entry of the result set
print “<p>\n”;
foreach my $auth (@{$result->{Authors}}) {
print $auth,”.
}

syioday ABojouydra) Aseiqi]

900z sun(—Ae|\ 610°e|2 3DINOSUYDS MMM

May—June 2006

www.techsource.ala.org

Library Technology Reports

print “{Url},”\">” if (length($result->{Url}) > 0);
print “$result->{ProductName}”;
print “” if (length($result->{Url}) > 0);
print “\Publisher: ¢ $result->{Publisher},”\n” if (length($result->{Publisher}) > 0);
print “\nPrice on Amazon: ¢ $result->{OurPrice},”\n” if (length($result->{OurPrice}) > 0);
print “</p>\n”;
}
&pagebottom;

Appendix 4:
AWS Web Service Example

3 AWS Web Service example by Marshall Breeding - Microsoft Internet Explorer E"Elrz
Fle Edk Yiew Favotes Jook Help Addess| glamazorweb-service.pl ¥ B3 G0 | AP
O-0-R @A & |F @ a-% W-0J * liks ™ Horton Antivinss % -

-~

Amazon Web Service Example

Items on Amazon by Marshall Breeding

Mecklermedia Corporation. Marshall Breeding. |nternet WorldAs, World Wide
Web Yellow Pages, The

Marshall Breeding. Integrated Library Systems for PCs and PC Networks:
Marshall Breeding. Tcp/p for the Internet The Complete Buyer's Guide to Micro-
Based Tcpllp Software

Marshall Breeding. Essential Guide to the Li 3 F
Library Systems (Essential Guide to the Library lbm PC

Marshall Breeding. Library Lans. Case Studies in Practice and Application

It 10 Lipr:

Marshall Breeding. Integrated Library Systems for PCs and PC Networks:
Descriptive and Anahdical Reviews of the Current Products

Marshall Breeding. Official "internet Word" World Wide Web Directory

Marshall Breeding. Strategies for measuring and implementing e-use (Library
technology reports) (Library technology reporis)

& @ Irkermet

Appendix 5:
Code That “Calls in” Subroutine for HTML Header and Beginning of Web Page

require “diglib-common.pl”;
&pagetop;
print “<h1>Amazon Web Service Example</h1>\n";

Appendix 6:
Script Utilized for Client to Send Query to AWS to Search by Author

my $amazon_wdsl = “http://soap.amazon.com/schemas2/AmazonWebServices.wsdl”;
use strict;
use SOAP::Lite;

my $query = $fields{‘Author’};

#Construct a new SOAP::Lite instance
my $search = SOAP::Lite->service(“$amazon_wdsl”);

Appendix 7:
Script That Invokes AuthorRequest, Defined in WSDL

Execute Amazon Web Service
my $results = $search >
AuthorSearchRequest(SOAP::Data->name(“AuthorSearchRequest”)

>type(“AuthorRequest”)
>value(\SOAP::Data->value(
SOAP::Data->name(“author” => $query),
SOAP::Data->name(“page” => “17),
SOAP::Data->name(“mode” => “books”),
SOAP::Data->name(“type” => “lite”),
SOAP::Data->name(“devtag” => $dev_token)
)

Appendix 8:
AuthorRequest Method in Perl Script Corresponds to AuthorRequest Data Type
(in WSDL)

<xsd:complexType name="AuthorRequest”>
<xsd:all>
<xsd:element name="author” type="xsd:string” />
<xsd:element name="page” type="xsd:string” />
<xsd:element name="mode” type="xsd:string” />
<xsd:element name="tag” type="xsd:string” />
<xsd:element name="type” type="xsd:string” />
<xsd:element name="devtag” type="xsd:string” />
<xsd:element name="sort” type="xsd:string” minOccurs="0"/>
<xsd:element name="variations” type="xsd:string” minOccurs="0"/>
<xsd:element name="locale” type="xsd:string” minOccurs="0"/>
</xsd:all>
</xsd:complexType>

Appendix 9:
Display Results

print “<h2>Items on Amazon by Marshall Breeding</h2>\n";
Display results
foreach my $result (@{$results->{Details}}){
#print each entry of the result set
print “<p>\n”;
foreach my $auth (@{$result->{Authors}}) {
print $auth,”. ¢
}
print “{Url},”\”>” if (length($result->{Url}) > 0);
print “$result->{ProductName}”;
print “” if (length($result->{Url}) > 0);
print “\Publisher: “,$result->{Publisher},”\n” if (length($result->{Publisher}) > 0);
print “\nPrice on Amazon: “,$result->{OurPrice},”\n” if (length($result->{OurPrice}) > 0);
print “</p>\n”;
}
&pagebottom;

syioday ABojouydra) Aseiqi]

900z sun(—Ae|\ 610°e|2 3DINOSUYDS MMM

May—June 2006

www.techsource.ala.org

Library Technology Reports

Appendix 10:
Script Based on ActiveState GoogleSearch.pm Module

require (“interface.pl”);

&pagetop(“Google Search Example”); # begins HTML page
print “<h2> Google Search Example </h2>\n";

use GoogleSearch;

if key is not provided, GoogleSearchService looks in $ENV{HOME},
or in the location of GoogleSearchService.pm for googlekey.txt

my $key = ‘xxxxx put your Google key here XXxxxx’;

my $google = new GoogleSearch();

my $return;

example of using spelling suggestion API

my $test = ‘marshal breding’;

$return = $google->doSpellingSuggestion($test)->result();

print “<p>Instead of $test did you mean $return?</p>\n";

example of a search
my $search = $fields{‘query’};
$return = $google->doGoogleSearch(
query => $search,
start => 0,
maxResults => 10,
restrict => ‘xml’,
)->result();

my $i = 0;

#my $resultdata;

#$resultdata->{‘GoogleSearchResults’};

print “<p>The number of Results: $return->{‘estimatedTotalResultsCount’}</p>\n";
print “<p>The search was: $return->{‘searchQuery’}</p>\n”;

foreach my $entry (@{$return->{‘resultElements’}}) {
$i++
print “<p style=\"margin-bottom: 0\">$i. \n

print “{URL}\”">$entry->{title}</p>\n";
print “<p class=\"details\">$entry->{snippet}</p>\n”;

}

&pagebottom; # ends HTML page

Appendix 11:

Web Page Displayed by the Embedded Google Search Client

A Google Search Example - Microsoft Internet Explorer

Fle Edit View Favorites Tools Help Address

Links Q] Google

S
! fwww librarytechnology .org/GoogleSearchExample.html ¥ ' Go

0 -0 N RAG LA -2 W-UK

ar

» .
Morton Antivirus &) ~

Library Technology Guides

~

Key resources and content related to Library Automation

LTG home

current news

news release archive
libwebcats
bibliography

library companies
ILS trends: ARL's

ILS trends: Public

fag

Register as an LTG
User and receive
free updates.

EZT Read updates
with RSS

Google Search Example

Instead of marshal breding did you mean marshall breeding?
The number of Results: 140000

The search was: Marshall Breeding

1. Marshall Breeding
Marshall Breeding is the Director for Innovative Technologies and Research for
the Jean and Alexander Heard Library at Wanderbilt University, ...

2. lib-web-cats: A directory of libraries and online catalogs on the ...
Directory of Libraries on the Web. ... The URL for lib-web-cats has changed to:

3. Key Resources in Library Automation
Library Technology Guides by Marshall Breeding. ... This section includes articles
written by Marshall Breeding, editor of Library Technology Guides, ...

4. Marshall Breeding: Resume
Breeding, Marshall. Integrated library systems for PCs and PC networks: ...

Breeding, Marshall. Mecklermedia's official Internet World World Wide \web yellow ...

5. lib-web-cats: Search for Libraries
What's new? Libraries added this week, Editor: lib-web-cats is maintained by
Marshall Breeding, Library Technology Officer, Wanderbilt University ...

6. Library Technology Guides: Send mail to Marshall Breeding
Library Technology Guides by Marshall Breeding. ... To:, Marshall Breeding,
Your Name:. Email address:. Subject:. Message: marshall breeding ...

7. LITABlog » Blog Archive » Marshall Breeding’s Top Technology Trends
June 22nd, 2005 by Marshall Breeding, The Changed Business Landscape ...
3 Responses to “Marshall Breeding’s Top Technology Trends”. Leo Klein Says: ...

8. FindArticles search for "'Marshall Breeding™
Read about marshall breeding in the free online encyclopedia and dictionary, ...
Find marshall breeding at one of the best sites the Internet has to offer! ...

9. ALA | Marshall Breeding
Marshall Breeding, is the Library Technology Officer at Vanderbilt University.
In this role he is responsible for strategic planning related to technology, ...

10. Marshall Breeding :: Alaska Library Association Annual Conference ...
Marshall Breeding. Image of Marshall Breeding. Marshall Breeding is the Director
for Innovative Technologies and Research at the Vanderbilt University ...

Mew Search |

Maintained by Marshall Breeding
Jean and Alexander Heard Library, Vanderbilt University, Nashville, TN
Copyright 2006

(=

&

® Internet

syioday ABojouydra) Aseiqi]

6JO'€|€'93JHOSL|391'N\N\N\

900z aunf—Ae|y

May—June 2006

www.techsource.ala.org

Library Technology Reports

Appendix 12:
SOAP::Lite Client Alternate Script That Yields Web Page Shown in Appendix 11

require (“interface.pl”);
use SOAP::Lite;

&pagetop(“Google Search Example”); # begins HTML page
print “<h2> Google Search Example </h2>\n";

my $key = ‘xxxxx put your Google key here XXxxxx’;
my $q="Marshall Breeding”;
my $googleSearch = SOAP::Lite -> service(“http://api.google.com/GoogleSearch.wsdl”);

example of using spelling suggestion API

my $check = ‘marshal breding’;

my $suggestion = $googleSearch->doSpellingSuggestion($key, $check);

print “<p>Instead of $check did you mean $suggestion?</p>\n";

my $results = $googleSearch -> doGoogleSearch($key, $q, 0, 10, “false”, «”, “false”, «”, “latin1”, “latin1”);
print “About $results->{‘estimatedTotalResultsCount’} results.\n”;
my $i = 0;
foreach my $result (@{S$results->{resultElements}}) {
$i++
print “<p style=\"margin-bottom: 0\">$i. \n
print “{URL},”\">”,$result->{title},”.”;
$summary = $result->{snippet};
print “<p>”,$summary,”\n”;
print “</p>\n”;
}
&pagebottom;

