
 Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2006

5

 Chapter 1

In an era of computing dominated by the World Wide
Web, technology referred to as Web services stands as
a key one for allowing computers to communicate ma-

chine to machine, program to program. In the same way
that the emergence of the Web transformed the way in
which humans communicate with each other and gather
information, users of Web services reap great benefi ts.
For example, Web services make it easy to connect all
types of computer applications to each other. As you will
see throughout this report, Web services deliver a founda-
tion of interoperability greatly needed in a world where
computer services and digital information exist in many
different forms and fl avors.

If, in the future, libraries want to be isolated islands
in the ocean of content and information, they can ignore
Web services. But because much of what libraries do cen-
ters on providing information to library clientele and be-
cause information is increasingly more electronic—which
causes libraries to overlap with many other organizations
in the information sphere—it is necessary for libraries to
cooperate and interact with a broad set of other organi-
zations and their technical infrastructures. Web services
provide mechanisms that allow libraries to expand their
services in many important ways. For instance, they allow
libraries to deliver services to patrons through nonlibrary
interfaces; enable business-to-business transactions with
library suppliers; and support behind-the-scenes search
and retrieval in remote resources to enhance service. This
report will provide many examples of current and poten-
tial capabilities made possible through Web services.

Web services involve a set of international protocols
and standards, developed and promoted by organiza-
tions such as the World Wide Web Consortium (W3C)
and the Organization for the Advancement of Structured
Information Standards (OASIS). Unlike library-specifi c

protocols—such as Z39.50, which never gained adoption by
other industries—Web services are not library-specifi c pro-
tocols. Instead, they extend libraries’ reach to the broad-
est arenas. Many industries and business sectors have
deployed Web services, and companies (i.e., Microsoft,
IBM, Oracle, Google, and Amazon) usually include Web
services among their strategic technologies.

World Wide Web Consortium (W3C)
www.w3.org

OASIS
www.oasis-open.org

W3C’s Defi nition of Web Services
www.w3.org/TR/ws-arch

In this report, I’ll explain why Web services are a
set of strategic technologies that libraries need to follow
closely and, as opportunities allow, consider adopting. On
one level, Web services are a set of technical specifi ca-
tions. More importantly, however, they refl ect the reality
of a world more interconnected and interdependent than
ever before. Organizationally and operationally, libraries
increasingly engage in more partnerships, dynamic busi-
ness relationships, and cooperative efforts, and thus Web
services stand as the technology well suited to support
organizations engaged in cooperative activities.

Intended Audience

This report aims to provide information on Web services

Introduction to Web Services

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

06

6

for a library audience. It will include both conceptual de-
scriptions of the technology and provide some technical
information on how Web services are implemented. As
the author, I do not assume the reader has any advance
technical knowledge and will attempt to explain all the
technical terms, abbreviations, and acronyms.

Library administrators or others that need to make
decisions regarding library-related technology systems or
issues will gain a perspective on the importance of this
technology as well as how the implementation of Web
services may relate to other library trends and initiatives.
Library technical staff will gain from both the conceptual
descriptions and the implementation examples.

This report does not aim to serve as a programming
guide for Web services; however, it should give library
programmers a basic idea of the steps involved so they
can develop utilities or applications that make use of a
Web service or create a Web service. I hope that all read-
ers will gain an appreciation of the importance of this
technology, which stands to open up exciting opportuni-
ties for libraries.

Basic Concepts

Web services lie within the trend for organizations
to follow what is referred to as a Service-Oriented
Architecture, which is an organizing principle for an or-
ganization’s technical infrastructure to support the needs
of the organization’s software users. Particularly in large
organizations, SOA, as it is often called, has become the
dominant approach for organizing information-technol-
ogy (IT) infrastructure. In broad terms, SOA involves an
orchestrated array of independent software components,
each of which provides a well-defi ned, self-contained unit
of functionality. SOA builds on long-standing trends to-
ward distributed computing and delivers the building
blocks of a modern framework suitable for a computing
age dominated by the Web.

Web services provide the means for implementing
this Service-Oriented Architecture. Although, theoreti-
cally, other technologies could be employed to construct
SOA, Web services stand as the dominant approach and
include a set of protocols and standards based on inter-
nationally established interoperable protocols, which pro-
vide a technology framework consistent with SOA.

Not all Web-service implementations rise to the level
of SOA, however. Organizations with complex computing
environments may develop strategies that organize their
technical infrastructures into modules and components
that communicate and operate through Web services.
Given the fact that many organizations (with some more
able to support Web services than others) work with a
variety of software applications, SOA, more likely, is more
of a goal than a fi nished product.

Web services can also be deployed to perform specifi c
functions without necessarily requiring that the entire
surrounding infrastructure be based on SOA. An indi-
vidual set of Web services can be implemented as needed,
and, over time, an organization’s infrastructure may grow
into a more full-fl edged SOA.

This report will identify specifi c XML technologies
that comprise Web services, but fi rst, it’s important to
clarify some common misconceptions.

What Web Services Are Not
The expression Web services can lead to a bit of confu-
sion, so let’s consider a few concepts that might easily be
mistaken for Web services, but, in fact, do not fall within
the scope of Web services.

For example, when discussing Web services, those
that are discussing the concept authoritatively are not just
talking about systems with a Web interface. Web inter-
faces deal with the front-end issues of information display
and interacting with users through a Web browser, which
has become the dominant tool for accessing information
and for operating software applications. Not only do most
users access basic Web pages through Web browsers, but
an increasing number of software applications also rely on
a Web interface (rather than graphical applications or win-
dows, such as ones that would be used to work in desktop
applications on computers running either a Windows or a
Macintosh operating system). With technologies such as
AJAX (Asynchronous JavaScript and XML), Web-based in-
terfaces can deliver almost all the user-interface features
previously only available through desktop applications.
But Web interfaces are not Web services.

Web-based information resources are not necessarily
Web services either. Just because content might be deliv-
ered through the Web does not make it a Web service.
Information presented through a Web browser—whether
through static Web pages or delivered dynamically from
an underlying database or repository—does not constitute
a Web service.

Increasingly, computer users receive professional
services—such as online banking, travel reservations,
map-and-travel-direction services, customer-support ser-
vices, and online shopping, just to mention a few—
through Web-based systems. These Web-based “services”
are also not what I mean when I refer to Web services
in this report.

Additionally, Web services should not be confused
with “software as service” or “application service provid-
er.” These increasingly popular models for software deploy-
ment involve hosting the application on a remote server
and providing its users access via the Internet. One of the
key advantages of this software model lies in the fact that
customers do not have to install and maintain software on
local servers or desktop systems. Still, though, software
as a service is not the same as Web services.

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2006

7

Finally, many libraries employ a person in the posi-
tion with the title Web Services Librarian. Typically, this
position is responsible for the design and maintenance
of the library’s Web site, which includes the delivery of
information resources and Web-based library services. In
most cases, however, a Web Services Librarian likely will
not be involved with Web-service technologies discussed
in this report.

Web Services: Plumbing for the Web
Each of the concepts mentioned previously deal with the
front end of the Web, the Web that a user “sees,” such
as a search-results Google page. Web services, rather, are
a behind-the-scenes technology; they provide some of the
plumbing needed to connect computer systems. These sys-
tems may often have a Web interface, but they don’t neces-
sarily have to have one. Web services operate on some of
the same lower-level protocols, such as TCP/P and HTTP,
associated with the Internet and the World Wide Web.

Not all computer-to-computer communications qual-
ify as Web services either. Although they do have some
fl exibility, Web services follow a specifi c architectural
framework and involve the use of a particular set of pro-
tocols and standards. EDI (electronic data interchange),
for example, is a computer-to-computer interaction that
follows protocols that are not considered Web services.

The framework of Web services provides some of the
basic components for e-commerce. Commercial transac-
tions often require the functionality to extract information
from multiple sources, e.g., when a user enters into an e-
commerce transaction through a particular organization’s
Web site. In the course of the transaction, the application on
the original server may need to contact other applications,
either within its infrastructure or from external sources. In
order to complete its work, the application may need to fi nd
the other applications that hold the necessary information,
send a request, and wait for and receive a response. Multiple
request-response sequences may take place, and multiple
providers may be involved. All these behind-the-scenes Web-
service transactions happen unbeknownst to the user. One
of the beauties of Web services lies in their ability to bring
the resources of multiple computer systems together to per-
form complex tasks without the intervention of the user.

The W3C, the group responsible for the development
of Web services, defi nes Web services as follows:

A Web service is a software system designed to sup-
port interoperable machine-to-machine interaction
over a network. It has an interface described in a
machine-processable format (specifi cally WSDL [Web
Services Description Language]). Other systems in-
teract with the Web service in a manner prescribed
by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards. (www
.w3.org/TR/ws-arch)

One of the key trends in technology involves distrib-
uted computing. Rather than create monolithic, self-con-
tained applications, developers often prefer to create mul-
tiple smaller systems, each with a specialized function.
Each component performs a specialized, well-defi ned task.
It is often easier to develop a group of small, specialized
components than a single, complex system. These small
components can often be used in multiple applications,
saving signifi cant development resources in the long term.
Additionally, these small, self-contained components can be
considered Web services when they implement the work-
fl ows and standards associated with this environment.

Web services can also breathe new life into older soft-
ware. Legacy systems, often built with tools and technolo-
gies now considered outdated, can be adopted to partici-
pate in a service-oriented environment.

The Web-services model is designed to be indifferent
to how any given computing task is accomplished. A soft-
ware application can be thought of as “wrapped” by a
Web service; in other words, the Web-service layer is not
affected by how a particular task is accomplished or what
hardware or software does the work. The job of a Web
service lies in transmitting a request for a particular task
to be accomplished and then delivering back the results.

Although a new application will likely be specifi cally
designed to operate as a Web service, legacy applications
can be turned into Web services by simply creating the
communications layers that enable the Web-service proto-
cols. By developing Web-service gateways, organizations
can help preserve investments that went into developing
previous generations of software applications. The inter-
nal-database architecture and content and business logic
of a legacy system can continue to operate as before, with
the application’s input and output transmitted through
the Web-service layers.

Web services hide the underlying hardware and soft-
ware from view, and the Web-services model facilitates
interoperability, neutralizing differences in hardware plat-
forms, operating systems, and development tools. Once
these components are wrapped in the Web-service proto-
cols, all software components appear the same to the us-
ers in the “outside world.” In addition, Web services can
be implemented on all matter of hardware and software
platforms—Linux, Unix, Mac, or Windows. Although it’s
possible to run Web services on desktop systems, most
reside on server-class hardware and operating systems.

Web services can operate in a stateless mode, or they
can be programmed to operate within specifi c, defi ned
sessions. Many simple Web services work independently
of any particular context or complex series of events. This
type of Web service consists of a simple, discrete, request–

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

06

8

response transaction. In some circumstances, however, it
is important to maintain a session among the participants
in an operation of Web services so that multiple Web-ser-
vice requests, i.e., those connected in a complex transac-
tion, can be orchestrated.

In a distributed computing environment, no single
computer application is likely to be entirely independent.
It’s often necessary for one computer component to rely
on others to obtain specifi c items of information or to
perform calculations or conversions. When a software ap-
plication needs information to perform its function, Web
services provide a mechanism for requesting that informa-
tion, a way to move that information, and how to struc-
ture that information for transit.

Web services provide a layer of communication tech-
nology that recognizes the interconnectedness of organi-
zations and their related spheres of expertise, informa-
tion, and services. It is a technology that allows organiza-
tions to better fulfi ll their roles as suppliers of services
and provides opportunities to create value-added services
based on enhancing services derived from others.

Web services can be considered a mature and well-
established computing model. As a technology, Web ser-
vices emerged in the late 1990s and have been gaining
ground since that time. The standards involved are well
defi ned and broadly adopted, and a plethora of tools exist
for developing a Web service. This is not a wait-and-see
technology; Web services are currently in the mainstream
and can be considered a safe investment for libraries.

Web-Service Components
and Protocols

Although a number of technologies might be employed to
implement a service-oriented architecture, the technology
realm of Web services involves a particular set of standards
and protocols. In this section, I’ll delve into the acronym
and abbreviation soup associated with Web services.

Role and Actions
The basic concepts of Web services focus on the roles
and actions that software components play in the overall
process:

● A service provider is a software component that has
some type of function or information resource that’s
offered for use by others. The service may involve per-
forming a computational task or returning a piece of
requested information from a database or repository.

● A service consumer is a software application that
initiates a request for, and makes use of, a service
provider.

● A service repository provides descriptions of the
services available within a given domain. These re-

positories will be equipped with some mechanism for
service providers to register services.

Operations or actions associated with the Web-services
model include:

● Publish—Once a Web service has been developed,
tested, and activated it is considered published. Part
of publishing a Web service includes registration in
the appropriate service repository.

● Find—In order to complete its work, an application
acting as a service consumer will need to fi nd the ap-
propriate service provider using a service repository.

● Bind—Once the service has been identifi ed, the ser-
vice consumer will bind it, which involves locating
its specifi c location on the network, contacting the
service provider, and invoking its service.

● Service Request/Response—To invoke a Web service,
the service consumer will issue a service request.
Upon successful completion, the service provider will
deliver a service response.

Workfl ows for Web Services
The Web-services model assumes a particular fl ow of com-
munications among applications. Specifi c roles and ac-
tions apply. (Figure 1, below, illustrates the general fl ow.)
Let’s step through the process.

● Step 1 begins with a user making a request. For in-
stance, say a user has accessed a Web page with a
panel that displays the local weather. The server that
hosts the Web page doesn’t have this weather infor-
mation stored locally; instead, in order to display it, it
depends on an external published service. That Web
server, which hosts the local Web page, in this con-
text, becomes a service consumer.

● In step 2, this service consumer issues a service re-
quest. (This scenario assumes there’s a computer out

Figure 1:
Communication Path for Web Services

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2006

9

on the Web that hosts a database, or a service reposi-
tory, of current weather conditions and predictions.)

● In step 3, the Web-service request is packaged as an
XML document and delivered over the Internet using
SOAP messaging via the HTTP transport protocol
(fi nd). The remote computer now takes on the role of
the service provider.

● In step 4, this service provider accepts the user’s
Web-service request.

● In step 5, the service queries its database and pack-
ages it in XML (bind) as a service response.

● In step 6, the original application receives the re-
sponse and presents its information to the user.

Keep in mind that all these steps happened almost
instantly and unbeknownst to the person who invoked
the information to be displayed on the Web page. The
plumbing analogy is a good one to call upon in order to
understand Web services; basically, Web services are just
fancy plumbing for the Web.

Although Web services operate as a set of techni-
cal mechanisms, they represent agreements and contracts
among individuals or organizations. Agreements must be
determined in advance—regarding which Web services will
be offered by a provider, who may consume the Web ser-
vices, and at what cost they are offered. Some Web servic-
es may be free and publicly available to any requestor, but
user authentication and security may need to be added to
services that transmit restricted or sensitive content.

In a complex environment, it is often necessary to
perform some routing of the message before it reaches
the service provider that can fulfi ll the service request.
The fi nal service provider is, therefore, often called the
endpoint.

The components that comprise Web services are
standards developed by the World Wide Web Consortium
(W3C)—the body that governs the Web itself. In this con-
text, Web services stand as an important piece of the
overall architecture of the Web. The World Wide Web
Consortium includes Web services as part of its architec-
ture domain strategy.

W3C Architecture Domain/Web
Services Activity
www.w3.org/2002/ws

The index page for its Web-service activities is lo-
cated at www.w3.org/2002/ws. This page links to re-
sources, which describe each of the standards, protocols,
and practices operating within the arena of Web services.
This Web site provides comprehensive and defi nitive in-
formation regarding the architecture of Web services and
the individual components that comprise them. In typical

W3C style, the information is presented in a straightfor-
ward but terse manner. Those familiar with standards doc-
uments will fi nd the content informative, though it makes
for diffi cult reading for those not technically inclined.

Now that I’ve established a general picture of the
workfl ow, I can move on to identifying the components
involved.

XML
XML (eXtensible Markup Language) is one of the most
fundamental concepts among Web-based technologies.
Almost all applications that deal with data today use
some form of XML as the structure and syntax to format
data. XML is especially useful when moving information
from a software application to another; many applications
use XML internally as well. XML provides the syntax for
structuring data, and all XML implementations follow the
same rules regarding basic syntax. Consistent rules apply
to how tags surround data elements, how tags are nested,
and how documents begin and end.

Although XML is designed to be processed by com-
puters, it is readable by humans. In previous eras of com-
puting, great efforts were made to store data in the most
compact form possible, therefore, data and record formats
were often expressed in binary representations that, al-
though compact, could not be easily interpreted by hu-
mans. In the library arena, MARC serves as an example of
this approach. The leader, tags, fi xed fi elds, variable fi elds,
and sub-fi eld indicators structure bibliographic data in a
way that conserves space but is diffi cult to read.

XML, by contrast, appears quite verbose. Instead
of cryptic numerical tags, XML employs descriptive tag
names. Today’s low-cost digital storage and expanded
bandwidth remove many of the previously existing moti-
vations to compress data to formats that only computers
can decipher.

Although XML offers great fl exibility, it demands ex-
act precision in the way that documents are constructed.
Most applications that use XML data verify that the docu-
ment follows the XML syntax rules. An XML document
that passes these rules can be considered well-formed
XML. Unlike in the realm of HTML, where forgiveness
abounds, any error will cause an XML document to be re-
jected. Yet most Web browsers can perform operations in
spite of errors; they are programmed to estimate the au-
thor’s intentions and then continue to process the page.
XML parsers, on the other hand, will reject a document if
even a single error is present.

The tags available for use in any given XML docu-
ment are defi ned according to the needs of the applica-
tion, and through agreements, are established among
communities of users. The members of an academic dis-
cipline, a business sector, or other groups of individuals
or organizations that deal with similar types of informa-
tion have a common interest in following the same XML

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

06

10

conventions. These communities may develop their own
DTDs (Document Type Defi nitions) or XML schemas that
defi ne XML tags, data types, vocabularies, and other rules
to ensure compatibility of meaning.

In the Web-service arena, great attention must be
paid to the namespaces and schema that apply to any
given XML document. Because Web services involve ex-
changing data among diverse participants, it is essential
to ensure that the data structures used are compatible.

The code in fi gure 2 (below) illustrates a very simple
XML document. It does not follow any specifi c schema or
DTD, but simply provides a citation using XML syntax.
Notice that the document begins with a header that de-
scribes the version of XML it uses and the character set,
or encoding, used for all data within the document. One
of the trickiest aspects of XML involves making sure that
all data adheres to the encoding rules established. Special
characters and punctuation marks often need to be con-
verted to an acceptable form, lest the XML document be
invalid and be rejected by the parser.

In fi gure 2, you can see a number of XML characteris-
tics from this simple example. Each XML document must
have a root element—a tag that marks the beginning and
end, encompassing all the other tags. In this example,
<citation> and </citation> serve as the document root.
Figure 2 also illustrates the fundamental syntax rule that
all tags have matching opening and closing elements. Any
unclosed tags will cause the document to be rejected.

Those who plan to develop applications based on
XML will need to become intimately familiar with all its
nuances.

SOAP
As has been explained, Web services involve sending a
request from a service consumer to a service provider and
receiving a response. SOAP functions as one of the main
mechanisms for transmitting the messages—between the
service consumer and the service provider—involved in a
Web service.

SOAP is a technology developed under the oversight
of the W3C; the documents that describe the current ver-
sion of the protocol reside on the W3C Web site (www
.w3.org/TR/soap).

Previously, the SOAP acronym stood for Simple
Object Access Protocol. But because the protocol really
isn’t that simple, and it deals with data structures in many
ways (as objects as well as many others), the purveyors
of the latest version of the standard chose to simply re-
fer to it as SOAP—it is no longer considered an acronym.
In its usual terse language, the W3C specifi cation intro-
duces SOAP in this way: “SOAP Version 1.2 (SOAP) is a
lightweight protocol intended for exchanging structured
information in a decentralized, distributed environment.
It uses XML technologies to defi ne an extensible messag-
ing framework providing a message construct that can
be exchanged over a variety of underlying protocols. The
framework has been designed to be independent of any
particular programming model and other implementation
specifi c semantics.”

Fundamentally, SOAP is a protocol for transmit-
ting messages, and of course, those messages will be
formulated in XML. In practical terms, SOAP specifi es
how to construct the XML document that represents the
message carrying the request and response. The current
version, SOAP 1.2, relies extensively on XML schemas.
The crucial role for SOAP lies in wrapping the requests
and responses according to the specifi cation. Figure 3
provides an example of a Web-service request created as
a SOAP message.

The example illustrates the components that com-
prise a SOAP message. Because it is in XML, the docu-
ment begins with the standard declaration and encoding
statement (<?xml version=‘1.0’ encoding=‘UTF-8’?>). Next,
you can see that the document’s root element is the SOAP
envelope (<SOAP-ENV:Envelope). The envelope provides
the locations of the schemas that support this instance of
SOAP. The SOAP body carries the methods and data that
represent the request or response.

Once properly formed or formatted, SOAP messages
then can be transported to the proper destination by the
Web-service application. SOAP does not specify the meth-
od of transport, and although Web services tend to rely
on HTTP to transport SOAP messages, other methods
can also be used, including a TCP socket, a simple mail
message, or a MIME attachment.

WSDL
Web Services Description Language (WSDL) is used to de-
scribe a service. The WSDL consists of an XML document
that can be used by a service consumer to automatically
confi gure itself to invoke a Web service from a service pro-
vider. Many SOAP environments are able to automatically
and dynamically confi gure themselves by simply parsing
the WSDL document. WDSL can also serve as documen-
tation to a programmer that wants to construct a static
Web-service client.

Not all Web services have corresponding WSDL doc-
uments. It is possible to access a Web service based on

<?xml version=’1.0’ encoding=’UTF-8’?>
<citation>
 <author>Breeding, Marshall</author>
 <title>Library Technology Guides</title>
 <type>Web site</type>
 <url>http://www.librarytechnology.org</url>
</citation>

Figure 2:
Illustration of a Very Simple XML Document

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2006

11

advanced knowledge of how it works. If the same devel-
oper, for example, creates both the Web service and the
client that accesses it, the formality of a WSDL may not
be necessary.

For more complex environments that include many
services, WSDL is more of a necessity. The WSDL will
include seven sets of defi nitions:

● <type> Specifi es the data structures and types in-
volved in the service messages.

● <message> Defi nitions of all the messages involved.
In most cases these messages include the service re-
quest and the service response.

● <portType> The defi nitions related to the interface
for each of the messages defi ned.

● <operation> Describes the operations performed by
the services in terms of the messages involved.

● <binding> Specifi es the protocols that will be em-
ployed to transport the messages and the type of
data encoding.

● <service> Provides the URL of the service on its host
server.

UDDI
Universal Description, Discovery, and Integration, referred
to as the abbreviation UDDI, is a protocol that functions
to fi nd Web services within a domain. At heart of this
process lies a UDDI registry—a repository of all the WSDL
XML documents that describe each of the services in the
domain. Within a domain serviced by UDDI, part of the
process of publishing a service includes registering the
WSDL to a UDDI registry.

The UDDI registry plays a role only in helping a ser-
vice consumer locate a suitable service provider. Once a
service consumer receives the location of the service, UDDI
binds the service with the service provider directly.

Not all implementations of Web services will have a
UDDI registry. In many cases the service consumer will

learn about a service via other means. Most public devel-
opers of Web services (such as those that developed the
popular Amazon Web Service) will discover the services
available through documentation provided by the service
provider.

Larger-scale implementations of Web services, with a
complex matrix of service consumers and service provid-
ers, will rely on UDDI to enable applications to operate
without human intervention. Domains that have a large
number of Web services will fi nd UDDI a useful tool, mak-
ing the environment more manageable. When a developer
makes a change to the service or adds a new service, reg-
istering the service in the UDDI will eliminate the need to
make programming changes in Web-service clients.

A UDDI registry can be either private or public. A
private registry operates within a closed domain, such as
within the enterprise network of a company. A public reg-
istry is available to all users on the Internet. There was a
public registry, UDDI Business Registry, which was oper-
ated by such companies as IBM, SAP, and Microsoft, but
this registry was phased out in early 2006.

SOAP: W3C’s Current Protocol Information
www.w3.org/TR/soap

Organization for the Advancement of
Structured Information Standards (OASIS)
www.oasis-open.org

The latest version, UDDI v3.0, has recently been
ratifi ed as a standard of OASIS (Organization for the
Advancement of Structured Information Standards). This
version can be considered as completely interoperable
among both private and public registries. The interoper-
ability between public and private registries in this ver-
sion of UDDI obviated the need to maintain the UDDI
Business Registry.

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
 xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/1999/XMLSchema”>
 <SOAP-ENV:Body>
 <ns1:getLibraryRequest xmlns:ns1=”urn:LibrarySearch”
 SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
 <query xsi:type=”xsd:string”>Vanderbilt University</query>
 <SearchType xsi:type=”xsd:string”>LibraryName</SearchType>
 </ns1:getLibraryRequest>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 3:
Web-Service Request as a SOAP Message

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

06

12

UDDI is a technically complex specifi cation. Although
the concept of the registry is simple, the API (application
programming interface) used to submit documents and
make queries is one of the more challenging components
to implement.

Network Transport
TCP/IP and HTTP play a supporting role in Web-service
interactions. The messages involved in an operation of Web
services rely on standard network protocols. Although it
is theoretically possible to use other protocols, TCP/IP
is ubiquitous and is used by almost all networks that
employ Web services. And though TCP/IP might be a
given, there are options for the specifi c method for which
a Web service might be implemented. The most common
approach involves transporting Web-service messages us-
ing HTTP, the same HyperText Transfer Protocol used
by the Web. Web services that operate over HTTP can
take advantage of the same Web-server software—usually
Apache—that delivers standard Web pages. It is also pos-
sible to create Web services that operate over TCP sock-
ets. Such a Web service would provide its own daemon
(a program that runs unattended to perform continuous
or system-wide functions) that monitors the network for
incoming requests.

REST
The model of delivering Web services through SOAP,
WSDL, and UDDI can be a complex undertaking. This
approach pays off in an environment with a full-fl edged
service-oriented architecture in place, which supports a
complex set of business applications.

There is a simpler approach available, however—the
Representational State Transfer, or REST. A Web service
based on REST is often called a RESTful Web service.

 A standard Web page responds with an HTML docu-
ment; a RESTful Web service involves responses format-
ted in XML. REST must live within the constraints of
the methods available in HTTP: GET, POST, PUT, and
DELETE.

Basically, in the REST model, a service consumer
sends its service request to a service provider as a URL;
then the service response is returned as an XML data
stream. It is up to the service consumer to parse the XML
stream and make use of the results.

A Web service based on REST can still be described
through a WSDL and can be registered with UDDI,
though it doesn’t have to be. The primary difference for
REST involves the absence of the SOAP layer.

Although a RESTful service can often be tested by us-
ing a Web browser, in actual operation, the URL that invokes
the service is sent by some other software application. Keep
in mind that even RESTful Web services are behind-the-
scenes operations, and in actual production, Web services
based on REST are still computer-to-computer operations.

The advantages of REST include simplicity and
speed. Implementing SOAP can be complex, and trans-
ferring messages through SOAP involves some overhead,
which can reduce performance and response time. REST
simply delivers a response as an XML stream, which can
deliver information very quickly.

RSS: A RESTful Web Service
A prime example of a Web service in the REST style is
Really Simple Syndication (RSS). Though RSS fi nds
many uses, the primary appeal lies in its ability to dis-
seminate newly created information—called a feed—data
that tells interested readers new items have been posted
on a blog, news service, or Web site. Many libraries use
RSS to disseminate information about library events, new
acquisitions, or to deliver search results.

A resource with an RSS feed will usually have an
XML or RSS graphic (see fi gure 4 below). This graphic
not only indicates the presence of an RSS feed, but links
to the URL that generates the XML document that repre-
sents the feed.

RSS is activated through a URL that, when invoked,
responds with an XML stream of the items to be distrib-
uted. Although it is possible to click the RSS URL and
view the XML in a browser, the normal approach is for a
RSS reader or aggregator to invoke the RSS link, accept
the XML document, and then format and present the RSS
entries for the viewer.

The Library Technology Guides Web site includes an
RSS feed that you can view as an example of a RESTful
Web service. The feed on this site can be invoked with the
URL www.librarytechnology.org/rss/rss.pl.

When invoked, the Perl script produces an XML docu-
ment (see appendix 1), which can be parsed and displayed
by a RSS reader.

The Perl script that dynamically generates the XML
document for the RSS feed is displayed in appendix 2.

Web-Service Security

The realm of Web services has all the same security con-
cerns as other networked systems. It is essential that a Web
service provides information only to the intended recipients
and that sensitive information is not exposed in such a way
that it can be intercepted by an unauthorized third party.
All of the authorization and authentication mechanisms
available for general network and Web operations can be ap-
plied to Web services. It is common for Web services involv-

Figure 4:
Typical Graphics Used to Indicate an RSS or XML Feed

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2006

13

ing business transactions, which carry sensitive data (e.g., a
credit card number), to be transmitted over HTTPS (secure
HTTP) rather than be sent over a network as clear text.

Other Web-Service Specifi cations
and Standards

As presented in this report, some of the core protocols
related to Web services include XML, SOAP, WSDL, and
UDDI. In addition to these fundamentals, a number of
other specifi cations have emerged, which enhance and
extend Web services in business transactions and that de-
mand special considerations not adequately addressed in
the basic protocols.

Web Services Interoperability Organization
www.ws-i.org

OASIS WS-Security v.1.1
www.oasis-open.org/committees/wss

BPEL4WS, v. 1.1
www-128.ibm.com/developerworks/library/
specifi cation/ws-bpel

These second-generation specifi cations are in an early
phase of development and adoption and are not likely to
be found in the current generation of library implementa-
tions of Web services. The realm of second-generation Web
services is complex and prolifi c; multiple standards and
industry bodies are involved, including the W3C, OASIS,
and the Web Services Interoperability Organization (www
.ws-i.org). Some of these later standards include:

● WS-Security provides an extension to SOAP, and it
supplies increased security and stronger guarantees
on the integrity and confi dentiality of the messages
involved in a Web service. The specifi cation supplies
a method for authenticating each message and is de-
signed to be fl exible enough to work with a variety
of security models and encryption technologies. WS-
Security v1.1 was approved as an OASIS standard in
February 2006 and is documented on the Web (www
.oasis-open.org/committees/wss).

● WS-AtomicTransaction/WS-BusinessActivity—There
are multiple specifi cations that deal with the coordi-
nation of transactions. When multiple services com-
prise a single business-transaction process, it is es-
sential that all complete successfully as a coordinated
transaction. If any part of the process fails, each indi-
vidual service must roll back its work to the original
state. Initially, the WS-Transaction specifi cation dealt

with this layer; more recently, WS-AtomicTransaction
and WS-BusinessActivity provide transaction coordi-
nation specifi cations for two different categories of
business transactions, those of short or long dura-
tion, carried out as Web services.

● WS-Coordination describes another set of protocols
related to the way that individual Web services work
together to perform a complex task in a business
application.

● WS-ReliableMessaging specifi es a protocol that en-
sures that messages are delivered reliably between
the components of a distributed application, even in
the presence of some type of system failure (such as
a network interruption).

● WS-Attachments describe how binary fi les can be at-
tached to SOAP messages without causing problems
with XML parsers.

● BPEL4WS, or Business Process Execution Language
for Web Services, is a specifi cation proposed by a
consortium of vendors including IBM and Microsoft.
According to IBM’s Web site on the specifi cation,
“BPEL4WS provides a language for the formal specifi -
cation of business processes and business-interaction
protocols. By doing so, it extends the Web Services
interaction model and enables it to support business
transactions. BPEL4WS defi nes an interoperable in-
tegration model that should facilitate the expansion
of automated process integration in both the intra-
corporate and the business-to-business spaces.” (www
-128.ibm.com/developerworks/library/specifi cation/
ws-bpel)

As it has evolved, and continues to evolve, the realm
of Web services—and the protocols, specifi cations, and stan-
dards I’ve highlighted thus far in this report are but just
a few—has continued and will continue in its ability to ac-
commodate complex business transactions. The nuances
of functionality taking place in these specifi cations each
represent important issues in transaction-oriented business
and fi nancial systems. Today, most library applications that
involve Web services operate only with the core specifi ca-
tions of XML and WSDL, and they may or may not use
SOAP. Very few library Web-service applications even make
use of UDDI. But as library-automation systems evolve to
use Web services in order to integrate with the fi nancial
systems of their parent institutions, they may well need to
be more aware and knowledgeable of the specifi cations that
relate to complex business transactions.

Common Web-Service Development
Environments

Flexibility abounds when it comes to the development of
Web services. All of the major programming languages

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

06

14

and development environments provide some method for
creating Web services. The following is just a sample of
some of the development tools and environments com-
monly used for building Web services.

Microsoft .NET
Microsoft Corporation has embraced Web services as a
key strategic technology, and it has been actively involved
in the development of protocols, standards, and specifi ca-
tions related to Web services. The company calls its Web-
service strategy .NET and appends this name to many of
its products and technologies.

Microsoft Visual Studio .NET is an integrated devel-
opment environment for the creation of software appli-
cations and has built-in support for Web services. There
are versions of this environment for several different pro-
gramming languages, including Visual Basic, Visual C++,
Visual C#, and J# (an implementation of Java).

Microsoft is working toward the release of its next-
generation development framework Indigo, which has
been specifi cally designed for the creation of service-ori-
ented business applications.

Java
Java stands as one of the dominant development environ-
ments today. Created and supported by Sun, applications
created with Java can operate on any computing platform
that supports a “Java virtual machine,” which is available
for virtually all operating systems. One of the major ad-
vantages of Java involves program portability; the same
program operates on multiple platforms without the need
to modify code or recompile.

Sun offers The Java Web Services Developer Pack as
a free integrated toolkit for the development of XML and
applications of Web services.

Most Web-based applications built with Java will
operate in conjunction with a servlet container, such as
Apache Tomcat.

Apache Axis
The Web-server software Apache powers a very large por-
tion of the Web servers in the world. Apache is an open-
source implementation created by a worldwide team of de-

velopers coordinated by the Apache Software Foundation
(www.apache.org).

Microsoft .NET
www.microsoft.com/net/default.mspx

Java.sun.com: The Source for Java Developers
http://java.sun.com

Apache Axis
www.apache.org

Active Perl Available from ActiveState
www.activestate.com

Axis is an implementation of SOAP for Apache Web
servers. With Axis in place, developing a Web service be-
comes an easier task because it takes care of the SOAP
messaging layer. Axis operates with Web services pro-
grammed in Java. Apache Tomcat, a “servlet container”
provides the application environment in which Java pro-
grams execute. In most cases, the combination of the
Apache Web server, Apache Axis, and Tomcat will work
together to provide an environment for SOAP-based Web
services based on open-source software.

Apache Axis replaces the older implementation
Apache SOAP. Axis has many more features, performs
better, and fi xes many problems that were present in
Apache SOAP.

SOAP::Lite
The SOAP::Lite Perl module provides the ability to create
Web services with the Perl programming language. Perl
is available on almost all of the major computer platforms
and is especially popular for writing Web-based applica-
tions. Perl is an open-source application and can be used
without cost. Perl is widely used on Unix and Linux varia-
tions. In the Windows arena, the company ActiveState
offers ActivePerl, which includes a binary distribution for
Windows. Perl with SOAP::Lite will be used for some of
the examples in this report.

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2006

15

Appendix 1:
XML Document Produced When RSS Feed for Library Technology Guides Web
Site Is Invoked

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns=”http://purl.org/rss/1.0/”
 xmlns:taxo=”http://purl.org/rss/1.0/modules/taxonomy/”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”
 xmlns:sy=”http://purl.org/rss/1.0/modules/syndication/”
 xmlns:admin=”http://webns.net/mvcb/”>
<channel rdf:about=”http://www.librarytechnology.org”>
<title>Library Technology Guides automation update</title>
<link>http://www.librarytechnology.org</link>
<description>Current news from the world of library automation. Includes press releases and other announce-

ments from companies involved in the library automation industry. Compiled by Marshall Breeding, new entries added
within 1 day of receipt. http://www.librarytechnology.org.</description>

<dc:language>en-us</dc:language>
<dc:rights>Copyright 2004 Marshall Breeding</dc:rights>
<dc:date>2006-03-10T22:09:18+00:00</dc:date>
<sy:updatePeriod>daily</sy:updatePeriod>
<sy:updateFrequency>1</sy:updateFrequency>
<sy:updateBase>2004-01-01T12:00:00+00:00</sy:updateBase>
<items>
 <rdf:Seq>
 <rdf:li rdf:resource=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11852” />
 <rdf:li rdf:resource=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11842” />
 <rdf:li rdf:resource=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11847” />
 <rdf:li rdf:resource=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11849” />
 <rdf:li rdf:resource=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11839” />
 </rdf:Seq>
</items>
</channel>
<item rdf:about=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11852”>
<title>Sno-Isle Library System extends AquaBrowser library search capabilities</title>
<link>http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11852</link>
<description>(March 10, 2006). Sno-Isle Library System in Washington has integrated Web site searching and RSS

feeds into its AquaBrowser Library search interface.</description>
<dc:publisher>The Library Corporation</dc:publisher>
</item>
<item rdf:about=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11842”>
<title>ALEPH 500 Version 18 delivers powerful new functionality for patrons and library staff</title>
<link>http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11842</link>
<description>(March 08, 2006). The Ex Libris Group is pleased to announce the general release of version 18 of

the ALEPH 500 integrated library system. With this product release, Ex Libris continues to offer major enhancements
refl ecting the company’s user-centric development strategy.</description>

<dc:publisher>Ex Libris</dc:publisher>
</item>
<item rdf:about=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11847”>
<title>SirsiDynix recognized by Alabama Governor for global trade excellence</title>
<link>http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11847</link>
<description>(March 08, 2006). SirsiDynix announced it is one of eight state companies recognized by Alabama

Gov. Bob Riley for excellence in exporting their products and services. Riley presented the Governor’s Trade
Excellence Award to SirsiDynix Chief Executive Offi cer Patrick Sommers and Vice President of Global Alliances Lamar

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

06

16

Jackson during a ceremony in the Alabama Capitol here today.</description>
<dc:publisher>SirsiDynix</dc:publisher>
</item>
<item rdf:about=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11849”>
<title>Amsterdam Public Library System goes live with most advanced AquaBrowser Library yet</title>
<link>http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11849</link>
<description>(March 8, 2006). AquaBrowser Library is live at the Amsterdam Public Library. Next to the

AquaBrowser catalog search in the library’s holdings you will fi nd Muziekweb, a Dutch music online library
offering a treasure trove of information on music; albums, trivia, reference and music websites. You can listen to music
clips live right from the search results.</description>

<dc:publisher>Medialab Solutions</dc:publisher>
</item>
<item rdf:about=”http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11839”>
<title>Endeavor Information Systems and TDNet expand partnership to introduce re-architected reference linking

solution for libraries</title>
<link>http://www.librarytechnology.org/ltg-displayarticle.pl?RC=11839</link>
<description>(March 07, 2006). Endeavor Information Systems announced that it has expanded its existing part-

nership agreement with TDNet, a leading provider of e-resource management solutions, to deliver a new technology
offering, Discovery: Resolver, a system which delivers enhanced electronic access to OpenURL and non-OpenURL tar-
get resources. Discovery: Resolver, a replacement for Endeavor’s current LinkFinderPlus product, will utilize
technology developed by TDNet to provide accurate context-sensitive linking from OpenURL enabled sources to full
text sources.</description>

<dc:publisher>Endeavor Information Systems, Inc.</dc:publisher>
</item>
</rdf:RDF>

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay—

Ju
n

e 2006

17

Appendix 2:
Perl Script That Dynamically Generates XML Document for an RSS Feed

require (“DBtextSQL.pl”);
$code = “LTG”;

$interval=3600 * 24 * 30;
($psec,$pmin,$phour,$pmday,$pmon,$pyear,$pwday,$pyday,$pisdst)=localtime(time-$interval);
$pfullyear = 1900 + $pyear;
$pmon++;
$now = $fullyear.$dash.$mon.$dash.$mday;
$then= $pfullyear.$dash.$pmon.$dash.$pmday;
$SqlStatement = “SELECT RecordNumber, Title, Publisher, Enum, Description FROM bib
 WHERE (SortDate CT \’$then:$now\’) AND (Format=\’Press Release\’)
 ORDER BY SortDate DESC”;
print “Content-type: application/xml\n\n”;
&createODBC;
&XMLheader;
&beginRDF;
<grssHeader;
&rdfItemList;
&rdfItemDescriptions;
&endRDF;
&endODBC;
$logfi lename = “bib-$fullyear-$month.log”;
open (SEARCHLOG, “>>$logdirectory\\$logfi lename”);
print SEARCHLOG “$date|$ip|RSS feed request\n”;
close (SEARCHLOG);

sub rdfItemList {
 print “<items>\n”;
 print “ <rdf:Seq>\n”;
 my $i = 0;
 &executeSQL(“$SqlStatement”);
 while ($db->FetchRow()) {
 %data = $db->DataHash();
 print “ <rdf:li rdf:resource=
 \”$server/ltg-displayarticle.pl?RC=$data{‘RecordNumber’}\” />\n”;
 # last if ($i == 20);
 $i++;
 }
 print “ </rdf:Seq>\n”;
 print “</items>\n”;
 print “</channel>\n”;
}

sub rdfItemDescriptions {
 my $i = 0;
 &executeSQL(“$SqlStatement”);
 while ($db->FetchRow()) {
 %data = $db->DataHash();
 print “<item rdf:about=
 \”$server/ltg-displayarticle.pl?RC=$data{‘RecordNumber’}\”>\n”;
 print “<title>$data{‘Title’}</title>\n”;
 print “<link>$server/ltg-displayarticle.pl?RC=$data{‘RecordNumber’}</link>\n”;
 $data{‘Description’} =~ s/’/\&\#8217;/g;
 $data{‘Description’} =~ s/\’/\&\#8217;/g;

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M

ay
—

Ju
n

e
20

06

18

 $data{‘Description’} =~ s/\’/\&\#8217;/g;
 print “<description>($data{‘Enum’}). $data{‘Description’}</description>\n”;
 print “<dc:publisher>$data{‘Publisher’}</dc:publisher>\n”;
 print “</item>\n”;
 # last if ($i == 20);
 $i++;
 }
}

sub XMLheader {
 print “<?xml version=\”1.0\” encoding=\”ISO-8859-1\” ?>\n”;
}

sub endXML {
 print “</xml>\n”;
}

sub beginRDF {
 print “<rdf:RDF\n”;
 print “ xmlns:rdf=\”http://www.w3.org/1999/02/22-rdf-syntax-ns\#\”\n”;
 print “ xmlns=\”http://purl.org/rss/1.0/\”\n”;
 print “ xmlns:taxo=\”http://purl.org/rss/1.0/modules/taxonomy/\”\n”;
 print “ xmlns:dc=\”http://purl.org/dc/elements/1.1/\”\n”;
 print “ xmlns:sy=\”http://purl.org/rss/1.0/modules/syndication/\”\n”;
 print “ xmlns:admin=\”http://webns.net/mvcb/\”\n”;
 print “>\n”;
}

sub ltgrssHeader {
 print “<channel rdf:about=\”http://www.librarytechnology.org\”>\n”;
 print “<title>Library Technology Guides automation update</title>\n”;
 print “<link>http://www.librarytechnology.org</link>\n”;
 print “<description>Current news from the world of library automation. Includes press releases and other an-

nouncments from companies involved in the library automation industry. Compiled by Marshall Breeding, new entries
added within 1 day of receipt. http://www.librarytechnology.org.</description>\n”;

 print “<dc:language>en-us</dc:language>\n”;
 print “<dc:rights>Copyright 2004 Marshall Breeding</dc:rights>\n”;
 if (length($mon) ==1) {$mon = ‘0’.$mon};
 if (length($min) ==1) {$min = ‘0’.$min};
 if (length($hour) ==1) {$hour = ‘0’.$hour};
 $dcDate = “$fullyear-$mon-$mday”.”T”.”$hour:$min:$sec+06:00”;
 print “<dc:date>$dcDate</dc:date>\n”;
 print “<sy:updatePeriod>daily</sy:updatePeriod>\n”;
 print “<sy:updateFrequency>1</sy:updateFrequency>\n”;
 print “<sy:updateBase>2004-01-01T12:00:00+06:00</sy:updateBase>\n”;
}

sub endRDF {
 print “</rdf:RDF>\n”;
}

