
Assuming we haven’t already lost all credibility by
repeatedly claiming that developing custom sites
within the Drupal framework doesn’t require code

and is actually quite easy, let us now reveal the secret. The
majority of our work really does not involve custom code,
but rather makes use of three contributed modules that com-
bine to create a point-and-click application-development envi-
ronment. The Content Construction Kit (CCK), Views, and
Panels modules work together to make this possible.

CCK

The Content Construction Kit module is really a frame-
work within a framework to extend Drupal’s node sys-
tem by allowing the creation of custom content types.
For example, a library could create a new custom content
type named Purchase Request. Site visitors could then
be invited to submit a request for a new book they would
like the library to consider purchasing. CCK starts with
the basic title and body, but also allows new fields to be
added (see figure 16).

A purchase request module would probably best
be set up to have the desired item being stored as the
node title. To clarify this for users, however, the usual
label “Title:” can be changed to read “Title of item being
requested:” You can then ask for additional information
about the item: a text field could collect the author, a
link field could ask for a link to a Web site showing the
item, and an e-mail field would let the library contact the
user about the request. To maintain security, you can
collect this information without ever displaying it back
anywhere on the public Web site. If there are concerns
about abuse of the form, it can be restricted to access by
Authenticated users.

It must be stressed that it would be very difficult to
overstate the power and potential for using CCK. Through
the very simple graphical interface of the module, you are
actually creating a Web form that collects data and depos-
its it in a database. In the past, this has been an incred-
ibly complicated action, often requiring the very expen-
sive time of a Web application developer. When we began
looking at offering book reviews for student use, we had
to make code changes to a special Book Review module.
Now, with CCK, we have been able to add a BCCKreview
module to Fish4Info that is more powerful and much eas-
ier to use. A CCK custom node is also at the heart of the
Fish4Info catalog; it provides full MARC integration with
CCK fields for MARC fields we want to display.

Chapter 7
 Lib

rary Tech
n

o
lo

g
y R

ep
o

rts w
w

w
.techsource.ala.org M

ay/Ju
n

e 2008

23

The Trifecta

Figure 16
Using Drupal’s Content Construction Kit module.

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M
ay

/J
u

n
e

20
08

24

Views

Once data has been collected through CCK, the next task
is to display the information back to users. To return to
the example of a purchase request, you will need to cre-
ate a report that lets librarians see incoming requests.
Though in the past this would have required custom
code, the Views module handles any reporting needs by
working as an incredibly complex filter. If all of the nodes
in Drupal exist in a giant pot of soup, then Views is a
dynamically slotted spoon that can instantly capture any
type of content.

Views are built from a number of elements: the out-
put display type, the fields to be displayed, the filters to be
applied, and the sorting to use. Views can be created as
pages and/or blocks in a variety of styles ranging from a
display of the full node to a custom list of fields in a table.
Table and list views can be built to include only selected
fields from the node (see figure 17).

To display purchase requests, you may want to cre-
ate a view that will display as both a block and a page.
When a librarian is logged in, you might want to display
a sidebar block listing the titles of the last five purchase
requests sorted by the date submitted. We could also use
a filter to make sure that the request hadn’t already been
approved or denied. This would give a quick overview of
new requests without using much screen space while also
allowing the librarian to click on a title for the full node.
To see more than the last five requests, the librarian could
go to the page-style view, which could present the requests
as teasers or even full nodes in a list. Using exposed filters
would also allow the librarian to further limit the view to
see requests from a certain user or requests that would go
to a certain department.

Panels

Now that you have a page and/or block of purchase
requests, you need to be able to display it on a page in a
way that won’t overwhelm librarians. While blocks and
block regions can help, they don’t provide organization
within the main content area. This is where the Panels
module comes into play. Panels are preformatted display
templates for the main content area of a Drupal site. The
panel templates included with the module are named by
the number of columns included and whether or not they
are stacked between a full-width header and footer. Panels
are further identified by the percentage widths of the col-
umns. For example, a 50/50 panel has two columns, each
of them half of the content width, while a 33/34/33 panel
has three roughly equal width columns.

Panels are an incredibly flexible way to lay out a dis-
play. Any of the panel regions can be filled with a vari-
ety of “stuff,” including content/nodes, views, blocks, or
custom text/HTML. Including a node is especially useful
for highlighting a permanent welcome message or other
front-page content. Remember, though, that nodes do not
have to be text. You can use images in a node to create
a graphical header to your content area. If you want to
include dynamic content, such as the latest blog post from
the reference desk or the five newest books, you need to
use a view in your panel. You can build a “Refdesk” view
that filters for posts only to the reference desk blog, sorts
them so the newest is first, and then displays just one post
on the page. Now by including that page in your panel,
you have a dynamic display of the latest post placed in a
static location. This is different from just promoting to a
generic front page where the post would be displayed in a
list of all the other promoted content. Narrow columns
are ideal for blocks that might normally be displayed in
a sidebar. Since the panel is part of the main content
area display theme, blocks displayed here appear to
flow together with the rest of the content, as opposed
to being set apart in a sidebar. If none of these meet
your needs, you can also include a custom HTML area
to add anything from simple text to a Flickr widget (see
figure 18).

Returning to the example of purchase requests, let
us explore how the view you created might fit within a
larger panel schema. One training issue we found while
developing our Fish4Info portal was that the administra-
tion pages can be overwhelming to users. To compensate
for this, we used a panel to create a librarian dashboard.
The dashboard is a combination of custom HTML areas
with links just to the management pages a librarian would
need to use, as well as additional blocks and views. So a
library that wanted to display purchase requests might
want to include a view of the latest requests as part of a
dashboard, along with other library updates. Panels make

Figure 17
Using Drupal’s Views module.

 Lib
rary Tech

n
o

lo
g

y R
ep

o
rts w

w
w

.techsource.ala.org M
ay/Ju

n
e 2008

25

this not only possible, but very sustainable; once the view
is established and placed in a panel, Drupal does all of
the updating.

Putting It All Together

The Genesee Valley BOCES School Library System runs a
subscription service for member libraries to provide media
services. One of these services is a television taping ser-
vice that allows users to request television programs to be
recorded for classroom use. For obvious reasons, having
the request system online is essential. We had originally
developed an in-house solution programmed in Microsoft’s
ASP that had all of the maintenance and security issues
of any homegrown system. Additionally, any changes in
functionality required lots of custom coding. We needed
something that integrated with our Web site, was reliable
and secure, needed little maintenance, and was extensible
as our needs changed. Of course, we used Drupal.

First, we downloaded and installed the following
modules to supplement our Drupal core installation:

CCK—allows the creation of custom content types•	

DateAPI and Date modules—gives us a field for •	
selecting date and time

JS Calendar—provides a nice graphical calendar •	
for selecting dates

Email module—gives us a field for e-mail addresses•	

Views—a module that lets us create custom lists •	
of nodes

To get started, we first created a new content type,
“Taping Request,” using CCK. To the standard title and
body, we also added fields for requester’s name, school,
e-mail address, program title, station, date, and time. By
default, the node is not published; only certain roles have
the ability to administer content and therefore publish

these requests so that they are viewable to everyone.
Anonymous users do not have the permission to publish
these content types, so they sit and wait for approval from
our media staff.

By just putting these pieces together and doing some
configuration on the Administer Content Types pages, we
had a Drupal form for site visitors to request tapings. After
clicking on a link to the “Taping Request” page, the user
is given the form to create a new taping request. Once the
user submits the request, Drupal creates an unpublished
node that is then displayed in a view. The view uses a filter
to display all unpublished taping requests. These requests
occur infrequently enough that we do not expect the staff
responsible for tapings to constantly check the Web site
for new requests. Instead we added some more functional-
ity from additional modules to supplement the view.

Subscription—allows users to subscribe to get •	
e-mails when additions are made

Calendar—a special view that allows users to look •	
at nodes in a calendar format

The next step was to set up e-mail subscriptions for
the media staff. The subscription module lets users get
e-mails of new nodes that are added to the site. You can
specify what kind of nodes prompt e-mails, as well as
taxonomy terms or comments on individual nodes. Now,
whenever a new node of the type Taping Request was sub-
mitted, the media staff received an e-mail with the details
of the taping request and a link to the taping request. We
also set up views listing the taping requests in chronologi-
cal order so that they could always see the next taping
requests as they came up. We set this up in a straight list
view and in a calendar view so that they had the option of
seeing the requests either way. Sometimes it is easier to
glance at a calendar and see a graphical notification (the
day is colored if there is a request) upon which to act (see
figure 19)

Figure 18
Using Drupal’s panels module.

Figure 19
Taping Request Form page.

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s

w

w
w

.t
ec

hs
ou

rc
e.

al
a.

or
g

 M
ay

/J
u

n
e

20
08

26

This quickly surpassed the functionality that we
already had with our previous taping request system,
which had taken considerable time to construct. With
Drupal, however, we also have the flexibility to continue
to reuse our content type. Oftentimes, the same televi-
sion programs get requested by many teachers, or teach-
ers might not notice good programs coming up. So we
want to give teachers and librarians a way to not only
request tapings but also promote upcoming programs and
share programs that are already requested. To accomplish
this, we created public views of the taping requests that
included requests that were published and promoted by
the media staff. Using the Signup module, users could
sign up for a taping already on the site by simply add-
ing their name, school, and e-mail address to the existing
request. Using views, we can also provide an RSS feed of

upcoming taping requests. If we wanted to, we could add
categories for subject areas and provide feeds by subject
area as well. Or we could use the Subscription module
once again and give users e-mail messages when a new
featured program is added in their subject area.

This example shows the real power of Drupal. As a
content management framework, Drupal is uniquely suited
to building Web applications from extensible modules in
a friendly and easy-to-learn environment. There was no
custom coding involved in this example. After dropping
the modules into the correct directory on the Web server,
everything was done through Drupal’s graphical inter-
face. The expertise demonstrated here is not knowledge
of computer programming, but rather an awareness of the
different modules available to supplement and extend the
Drupal core functionality.

