
American Library Association

Library Technology
R E P O R T S

E x p e r t G u i d e s t o L i b r a r y S y s t e m s a n d S e r v i c e s

alatechsource.org

Coding for Librarians: Learning by Example

Andromeda Yelton

Library Technology
R E P O R T S

Library Technology Reports (ISSN 0024-2586) is published eight times a
year (January, March, April, June, July, September, October, and Decem-
ber) by American Library Association, 50 E. Huron St., Chicago, IL 60611.
It is managed by ALA TechSource, a unit of the publishing department of
ALA. Periodical postage paid at Chicago, Illinois, and at additional mail-
ing offices. POSTMASTER: Send address changes to Library Technology
Reports, 50 E. Huron St., Chicago, IL 60611.

Trademarked names appear in the text of this journal. Rather than identify
or insert a trademark symbol at the appearance of each name, the authors
and the American Library Association state that the names are used for
editorial purposes exclusively, to the ultimate benefit of the owners of the
trademarks. There is absolutely no intention of infringement on the rights
of the trademark owners.

Copyright © 2015 Andromeda Yelton
All Rights Reserved.

alatechsource.org

ALA TechSource purchases fund advocacy, awareness, and
accreditation programs for library professionals worldwide.

Volume 51, Number 3

Coding for Librarians: Learning by Example
ISBNs: (print) 978-0-8389-5957-2

(PDF) 978-0-8389-5958-9
(ePub) 978-0-8389-5959-6
(Kindle) 978-0-8389-5960-2

American Library Association
50 East Huron St.

Chicago, IL 60611-2795 USA
alatechsource.org

800-545-2433, ext. 4299
312-944-6780

312-280-5275 (fax)

Advertising Representative
Patrick Hogan

phogan@ala.org
312-280-3240

Editor
Patrick Hogan

phogan@ala.org
312-280-3240

Copy Editor
Judith Lauber

Production
Tim Clifford and Alison Elms

Cover Design
Alejandra Diaz

Subscriptions
alatechsource.org/subscribe

About the Author

Andromeda Yelton (http://andromedayelton.com) is
a self-employed librarian and software developer who’s
passionate about promoting coding, collaboration, and
diversity in library technology. She has a BS in math-
ematics from Harvey Mudd College, an MA in classics
from Tufts, and an MLS from Simmons. Before her MLS,
she taught Latin to middle school boys; after that, she
did library outreach, software, and communications at
the e-book startup Unglue.it. Her notable honors include
winning the 2010 LITA/Ex Libris Student Writing Award;
being selected as an ALA Emerging Leader, class of 2011;
being a 2013 Library Journal Mover & Shaker; and having
been a listener contestant on Wait, Wait, Don’t Tell Me.
She is a member of the Ada Initiative advisory board and
the LITA board of directors.

Abstract

This issue of Library Technology Reports draws from
more than fifty interviews with librarians who have
written code in the course of their work. Its goal is
to help novice and intermediate programmers under-
stand how programs work, how they can be useful in
libraries, and how to learn more.

Three chapters discuss use cases for code in librar-
ies. These include data import, export, and cleanup;
expanded reporting capability; and patron -facing ser-
vices such as improvements to catalog and LibGuide
usability. Most of the programs discussed are short—
under a hundred lines—so that implementing or modi-
fying them is within the reach of relatively novice pro-
grammers. Where possible, links to the code itself are
provided. Several scripts are explained in depth.

Additional chapters focus on nontechnical aspects
of library code. One chapter outlines political situa-
tions that have been faced by librarians who code and
the solutions they have employed. Another chapter
shares interviewees’ advice on specific resources and
strategies for learning to code.

Get Your Library Technology Reports
Online!
Subscribers to ALA TechSource’s Library Technology
Reports can read digital versions, in PDF and HTML for-
mats, at http://journals.ala.org/ltr. Subscribers also have
access to an archive of past issues. After an embargo
period of twelve months, Library Technology Reports are
available open access. The archive goes back to 2001.

Chapter 1—Introduction 5
Who This Report Is For 5
What You’ll Find Here 6
Survey 7
Acknowledgments 7

Chapter 2—Data Workflows 9
Examples 9
Deep Dive: LibALERTS 10
Notes 12

Chapter 3—Reporting 13
Examples 13
Deep Dive: Automated ILS Reporting 14
Notes 15

Chapter 4—Patron-Facing Services 16
Overview 16
Examples 16
Deep Dive: LibGuides Organizer 19
Notes 21

Chapter 5—Political and Social Dimensions of
Library Code 22

Library Coders’ Job Descriptions and Realities 22
Buy-in 23
Institutional Barriers 24
Notes 25

Chapter 6—Learning to Code 26
Learning Strategies and Resources That Coders Recommend 26
Workplace Support 29
Conclusion 30
Notes 30

Contents

5

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

There’s been a huge amount of interest among
librarians in learning to code. Numerous library
conferences—including ALA, LITA Forum, Texas

Library Association, Access, Code4Lib, and the Ontario
Library Association—have featured programming tuto-
rials or hackathons in recent years. These short work-
shops are wonderful for exposing people to fundamen-
tal concepts and creating positive experiences around
code, but students don’t necessarily know what to do
next. For the learning to stick, people need real-world
projects to which they can apply their newfound skills,
which raises the question: how do librarians use code
in their everyday work? This issue of Library Technol-
ogy Reports is an answer to that question.

For this report, I reached out to LITA-L, the
Code4Lib and LibTechWomen mailing lists, and my
own network to survey librarians on how they use
code in their jobs. I particularly looked for people
who are not primarily developers and who could share
examples of short scripts (under a hundred or so lines)
that they’d written. While there are some wonderful
large-scale code projects in libraries, I wanted to write
about small, useful scripts that don’t require expert-
level coding skill: projects that are within reach even
for fairly new coders. If you’ve been looking for rea-
sons to learn code, ways to apply developing coding
skills, or concrete examples to help you justify profes-
sional development support, this report is for you. If
you manage aspiring coders you want to support, this
report is for you, too.

Who This Report Is For

This report has three main audiences:

• librarians who are considering learning how to
code

• librarians who have done some introductory pro-
gramming study and are looking for next steps

• managers of librarians who code

If you’re considering learning how to code, this
report will give you lots of ideas about what you can
do with code, what might be most helpful to learn, and
how you can make your case to management. You’ll
probably want to skip ahead first to chapter 6, which
summarizes survey respondents’ advice on learning
how to code. Then read chapters 2–4 to see real-world
things your peers have done with code. That will help
you narrow down your options.

Unless you’re aiming to be in a pure develop-
ment role, it’s not practical to learn all the software
topics that might be of interest; by contrast, master-
ing the fundamentals of programming and learning
how to make one language do a few useful things is
an achievable goal that will give you powerful, flex-
ible new ways to approach your everyday librarian
work. The middle chapters describe programs writ-
ten by librarians with a variety of job descriptions,
in different institutions, addressing diverse use cases.
Look for projects that would be helpful in the context

Introduction

Chapter 1

6

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

of your work, and use those to guide what you need
to learn.

If you’ve already learned programming fundamen-
tals, you may also find chapter 6 helpful, since it includes
intermediate learning resources as well as options for
review. However, start with chapters 2–4. Writing your
own version of one of the programs in these chapters
will be an excellent way to practice your skills and find
out what you need to learn next. Most of them are under
a hundred lines; I explicitly asked for short programs so
that they’ll be manageable for new programmers. Many
of them have source code online; these links are pro-
vided in each chapter. Modifying others’ code for your
own use case is also a great way to improve your skills.
Indeed, many library coders get a great deal of mileage
out of modifying others’ code and rarely if ever write
their own from scratch. Finally, chapter 5, which details
the political challenges and benefits of library code, will
be helpful to you as you start to deploy code at work.
Many library coders find that navigating buy-in and
advocating for code are every bit as integral to their
work as the actual programming. Avoid reinventing the
wheel; learn about the problems they’ve encountered
and techniques for handling those problems. And look
for inspiration in the ways that people have positively
impacted themselves and their coworkers through code.

If you’re a manager, whether you code or not, you
may be looking for ways to support your technically
inclined supervisees. Chapter 6 outlines the support
that librarians have received at work for learning to
code. Some survey respondents are managers as well
as coders, and I also asked them what kinds of support
they provide; this is covered in chapter 6 as well. Chap-
ter 5, about the political impacts of code, is also rele-
vant to you. Finally, if you’re not a coder, you may be
interested in reading chapters 2–4 simply to see what
others have done with code in libraries and how simi-
lar work might benefit your own library. Of course,
if you are a coder, you may be interested in reading
these chapters to get ideas for your own projects.

What You’ll Find Here

After the introduction, there are three main sections.
Chapters 2–4 cover programs that librarians have writ-
ten to get things done better in their libraries, orga-
nized by common use cases: data cleanup, import, and
export; reporting; and patron-facing services (mostly,
but not always, through the website). Chapter 5 covers
the political and social impact of library code, which
came up so often in survey responses that it demanded
a chapter of its own. Chapter 6 covers resources and
advice for learning to code.

Chapters 2–4 each follow the same internal struc-
ture. After an introduction outlining the general use
case of the code in the chapter, there’s an examples

section with brief overviews of a half dozen or so
scripts. Each overview notes the script’s author, lan-
guage, and purpose. Where available, links to source
code are provided, and you’re encouraged to consult
that code alongside the text.

After the overviews, each of chapters 2–4 has a
deep dive into one script. Think of this as a code-read-
ing group we’re doing together, aimed at novice pro-
grammers. I’ll walk you through the scripts line by line,
showing you how they’re organized and what each part
accomplishes. Each of these scripts is online, so please
pull up the code in your web browser and follow along.
Additionally, the deep dives offer commentary on best
practices and suggestions for how to expand or modify
each program in case you want concrete ideas for prac-
ticing your programming skills.

These deep dives intentionally address different use
cases and focus on programs written in different lan-
guages (PHP, Python, and JavaScript, all of which are
in widespread use in libraries). I want to maximize the
chances that one of them is relevant to you, no mat-
ter what library role you’re in or what programming
languages you may speak. I’m also deliberately agnos-
tic throughout this report about what language you
should learn. All of them incorporate the same funda-
mental programming concepts, like variables, control
flow, and functions; all of them can be used to tackle
a wide variety of problems. While many programmers
have strong feelings about what language is best, the
best language for you depends on which languages have
good tools for solving problems you care about; which
ones your coworkers, friends, or local community are
already using; which have good learning resources you
can access readily; and which appeal to your own idio-
syncratic sense of aesthetics. I feel strongly that learn-
ing to program can be intellectually stimulating, per-
sonally empowering, and professionally useful, and you
can realize those benefits regardless of what program-
ming language you start with.

A note on mechanics: like many books on program-
ming, this report follows the convention that text writ-
ten in monospaced font represents code. When I am
directly quoting lines of code or words from program-
ming languages, I’ll use Courier. For the most part,
however, I refer to code samples online rather than
reproducing them in the report.

Finally, there are a lot of survey responses that
couldn’t fit in this report, and ultimately the web is a
more natural home for code than a report. For more
information—including both scripts as of this writing,
and any changes they may have undergone since—con-
sult the companion website.

Companion website
https://thatandromeda.github.io/ltr

7

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

Survey

In the box above are questions and explanatory text
from the survey. Asterisks indicate a required ques-
tion. Not shown are requests for name, contact infor-
mation, and referrals.

Acknowledgments

Thank you to all of my survey respondents, who shared
so generously of your time, insight, and code. You are
the giants on whose shoulders I stand.

Hillel Arnold (Lead Digital Archivist, Rockefeller
Archive Center); Jason Bengtson (Head of Library Com-
puting and Information Systems, University of Okla-
homa); John Blyberg (Assistant Director for Innovation

and User Experience, Darien Library); Terry Brady
(Applications Programmer Analyst, Georgetown Uni-
versity); Matthew S. Collins (Director of the Library
and Associate Professor, Louisville Presbyterian Theo-
logical Seminary); Esme Cowles (Lead Product Devel-
oper, UC San Diego Library); Jeremy Darrington (Pol-
itics Librarian, Princeton University Library); Robin
Camille Davis (Emerging Technologies & Distance Ser-
vices Librarian, John Jay College of Criminal Justice
[CUNY]); nina de jesus (Digital Projects Librarian, York
University); Misty De Meo (Digital Collections Techni-
cian, Canadian Museum for Human Rights); Rachel
Donahue (Digital Projects Librarian, Special Collec-
tions National Agricultural Library); Mike Drake (Dep-
uty Director, Tulare County Library); Shaun Ellis (User
Interface Developer, Princeton University Library);
Genny Engel (Webmaster, Sonoma County Library);
Chris Fitzpatrick (ArchivesSpace Developer, Lyrasis);
Angela Galvan (Digital Reformatting Specialist and
Head, Document Delivery, The Ohio State University
Health Sciences Library); Mike Giarlo (Digital Library
Architect, Penn State University); Ron Gilmour (Web
Services Librarian, Ithaca College Library); Annie
Glerum (Head of Complex Cataloging, Florida State
University Libraries); Jason Griffey (Chief Technology
Strategist, University of Tennessee at Chattanooga);
Thomas Guignard (École polytechnique fédérale de
Lausanne); Cindy Harper (Electronic Services and Seri-
als Librarian, Virginia Theological Seminary); Michael
Holt (Reference Librarian/Marketing Coordinator,
Valdosta State University Odum Library); Ken Irwin
(Reference Librarian, Wittenberg University); Debo-
rah Kaplan (Digital Resources Archivist, Tufts Univer-
sity Digital Collections and Archives); Francis Kayiwa
(Assistant Professor and Systems Librarian, Colgate
University Libraries); Bohyun Kim (Associate Direc-
tor for Library Applications and Knowledge Systems,
University of Maryland, Baltimore); Sam Kome (Direc-
tor, Collection Services and Scholarly Communication,
Claremont Colleges Library); Tricia Lampron (Meta-
data Service, University of Illinois at Urbana-Cham-
paign); Joel Marchesoni (Tech Support Analyst, Hunter
Library at Western Carolina University); Joe Monti-
bello (Library Systems Manager, Dartmouth College);
Christine Moulen (Library Systems Manager, MIT);
Chad Nelson (Developer, CollectionSpace); Jeremy
Nelson (Metadata and Systems Librarian, Tutt Library,
Colorado College); Joy Nelson (Director of Migrations,
ByWater Solutions); Eric Phetteplace (Emerging Tech-
nologies Librarian, Chesapeake College); Dot Porter
(Curator, Digital Research Services, University of Penn-
sylvania); Carrie Preston (Head of Web Services, Ohio
University Libraries); Matthew Reidsma (Web Services
Librarian, Grand Valley State University); Sibyl Schae-
fer (Assistant Director, Head of Digital Programs, Rock-
efeller Archive Center); Michael Schofield (Librarian of
Web Services, Alvin Sherman Library, Research, and

Survey
I’m writing a Library Technology Report for ALA Tech-
Source on lightweight, useful programs librarians &
archivists have written to get their jobs done better.
You need not be a library developer to answer these
questions—in fact, I want to hear from people with all
sorts of library roles! You need not be an expert coder
or have a perfect code sample available, either. If you
wrote some code that got something done, no matter
how hackish or how elegant, I want to hear from you.

How much of your job is about coding? Do you have
any formal code responsibilities, or is this simply a skill
that you bring to your formal responsibilities? *

Have you had support from your employer in learning
to code/spending your time on coding? *

If you’re a manager, have you provided support to
employees who want to learn to code? If so, what
sort? If not, why not?

What would you recommend to someone who want-
ed to learn to write code?

For the following questions, please pick a short pro-
gram (less than a hundred-ish lines) that you wrote to
do some library/archives task. If you have more than
one you’d like to talk about, feel free to have multiple
answers per question (just make it clear which answer
goes with which script).

What language was this code written in? *

What problem did this code solve? *

What was the impact of the code? (time saved, new/
improved service to patrons, etc.) *

If the code is publicly available, please link it here.

What did you learn from implementing this code? *

8

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

Information Technology Center); Coral Sheldon-Hess
(Web Services Librarian, University of Alaska Anchor-
age); Jason Simon (Technology & Serials Librarian,
Fitchburg State University); Owen Stephens (Indepen-
dent Consultant); Ruth Szpunar (Reference and Instruc-
tion Librarian, DePauw University); Scott Turnbull
(Lead Software & Systems Engineer, University of Vir-
ginia); Esther Verreau (Web Developer, Skokie Public
Library); Matt Weaver (Web Librarian, Westlake Por-
ter Public Library); Evviva Weinraub Lajoie (Direc-
tor, Emerging Technologies & Services, Oregon State
University Libraries & Press); Josh Westgard (Gradu-
ate Assistant, Digital Programs and Initiatives, Univer-
sity of Maryland Libraries); Amy Wharton (Research
& Emerging Technologies Librarian, University of Vir-
ginia School of Law Library); Erin White (Web Systems

Librarian, Virginia Commonwealth University); and
Stuart Yeates (Technical Specialist, Victoria University
of Wellington).

I’d like to thank two people particularly for not only
responding to the survey but also for giving me feed-
back on the rough draft: Sarah Simpkin (GIS and Geog-
raphy Librarian, University of Ottawa) and Becky Yoose
(Discovery and Integrated Systems Librarian/Assistant
Professor, Grinnell College). Additionally, thank you to
the following people for last-minute beta reading: Nat-
alie DeJonghe, Jordan Hale, David Saunders, Padraic
Stack, Anne Sticksel, and Deidre Winterhalter.

The listed institutions and titles were accurate when
respondents answered the survey; some have since
changed jobs. Any other errors are, of course, my own.

9

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

One of the most common use cases for coding
in libraries is data processing. Whether it’s
import/export, quality control, combining data

from different sources, or adapting externally pro-
vided records to local purposes, data tasks are ubiq-
uitous in library technical services. Many of them are
quite repetitive and, as such, lend themselves well to
scripting. In addition, computers are often faster and
more accurate than humans at repetitive tasks. There-
fore, the time spent in developing data processing
scripts can pay off manyfold in increased efficiency,
freeing librarians to do more creative, sophisticated
tasks that require human insight.

In this chapter, I’ll provide an overview of eight
scripts that simplify various data processing tasks and
do a deep dive into a ninth. Their use cases include
metadata quality control, import/export workflows,
bulk downloading, and data migration.

It’s notable that these nine scripts are in seven dif-
ferent programming languages (bash, Python, VBA for
Excel, Perl, Ruby, XSLT, PHP). Beginning program-
mers often want to know the best language to learn,
and there truly isn’t one. While some languages may
be easier or harder for a given student, and more or
less suited for a particular use case, they all incorpo-
rate the same fundamental programming concepts,
and all of them open a lot of doors.

Examples

Facing a need to export data from DSpace, nina de
jesus wrote a bash script to do it. This script exports
metadata from every handle in a series and dumps it
to a CSV file for later processing. Like many program-
mers, de jesus learned how bash worked in the course

of getting this script to work. This made it slow going
at first, but she expects it to pay off handsomely over
time: “For all that this tiny script took me a long time
to write (maybe three or four days to get it working
properly), it saved me a lot of tedious hours of slowly
(manually) going through database tables and spread-
sheets to get the data I needed. And now I can use the
script whenever I need to get this kind of data out of
DSpace again (which I’m sure will happen).”

nina de jesus’s script
http://satifice.com/2014/10/22/exporting-the-
metadata-of-a-range-of-handles-in-dspace

Hillel Arnold also needed to export metadata:
in his case, EAD files from ArchivesSpace. His short
Python script finds all the resource IDs that match a
given criterion, gets their EAD, and writes it to a speci-
fied destination.

Hillel Arnold’s script
https://gist.github.com/
helrond/1ef5b5bd47b47bd52f02

Becky Yoose also saved time by automating a
tedious workflow. Her library had a trigger file, in
Excel format, of books to be acquired under a patron-
driven acquisition policy. The library needed to
extract MARC records from the database using local
control numbers in the file, edit them for consistency
with local cataloging rules, and insert codes to make
the ILS’s purchasing module automatically create an

Data Workflows

Chapter 2

10

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

order request. By hand, this workflow took five to ten
minutes per week per record, or almost one to two
hours per week of cataloger time; the script reduced
processing to two minutes total, for a net savings of
one to two weeks per year of cataloger time. Addition-
ally, as she notes, “Each time a human has to touch the
record, it’s a possible fail point” because of the risk of
misspellings and other oversights; machine processing
improves accuracy while saving time.

A version of this script (edited for use in the LITA/
ALCTS Library Code Year Interest Group Python pre-
conference at ALA Annual 2013) is available online.
The README at that link explicitly permits library
reuse and adaptation.

Becky Yoose’s script (edited)
https://github.com/LibraryCodeYearIG/MARC-record-edit

Tricia Lampron had a text file with bar codes cor-
responding to files that needed to be downloaded. By
hand, this meant she had to “enter in the link, right click
to download the file, and then . . . change the file name
once downloaded” for up to 190 files—a tremendously
tedious process. Her Python script reads the text file,
constructs the corresponding URL, downloads the file,
and creates an appropriately named XML file locally.

Joy Nelson and Ruth Szpunar both faced meta-
data cleanup tasks. Szpunar cleaned up and organized
metadata from a digitization project using VBA for
Excel. Nelson works for an ILS support vendor whose
customers often want to move data from one MARC
tag to another during ILS migrations; she wrote a Perl
script to handle this task. Nelson’s use case in partic-
ular underscores how tedious, repetitive tasks can be
great scripting candidates if you can specify a clear
rule for them; as long as you can specify the exact field
and subfield that you want data to move from and to,
you can write this program with only a handful of lines
of code, and it will execute accurately over thousands
of records in (almost) no time.

Misty De Meo faced a more complex migration
problem. She inherited a controlled vocabulary, “but
it became clear that there were a large number of defi-
ciencies in it: inconsistencies, missing terms, duplicate
terms, incorrectly-matched relationships, and so on.”
It’s difficult to have a computer fix this kind of prob-
lem because there are so many ways the data can be
wrong, and making it right could require human judg-
ment calls. However, she was able to write a Ruby
script that automatically fixed the simpler errors and
flagged others for subsequent human review. Along
the way she gained better insight into her data set:
“It really helped me understand why the metadata
had problems, and helped me reason about what was
probably intention vs what was probably an accident.

Many patterns that weren’t at all obvious when read-
ing metadata by eye instantly became clear once it was
being processed by software.”

These kinds of data quality problems are common
in library coding and can sometimes be so pervasive or
frustrating as to make it infeasible to build software on
top of the data. However, exposing problems through
attempts to write code can suggest opportunities for
improvement. Clarifying local cataloging rules, adding
input validation (see Eric Phetteplace’s script in chap-
ter 4), or writing scripts that run regularly to detect
common problems can all improve data quality, for
example.

Annie Glerum also had metadata quality prob-
lems: in her case, inaccurate vendor records. Her XSLT
stylesheet “identifies records needing location code
edits for the catalog’s holdings record, corrections
to the MARC coding, edits to bring the record to full
level, or human review for special formats and sets.”
It outputs its report as an Excel spreadsheet, which fits
well into subsequent workflows.

Deep Dive: LibALERTS

Patrons at Westlake Porter Public Library (Westlake,
OH) wanted to be notified by text message when the
library got new books by their favorite authors.1 While
the library’s OPAC had similar functionality, it didn’t
let patrons refine their searches enough to be useful
and had been turned off. The library’s Drupal web-
site, however, provided many of the building blocks
needed: SMS integration, a module to create Drupal
nodes from MARC imports, and a module allowing
users to subscribe to terms in the site taxonomy. Matt
Weaver—“a development team of 1 [with] a budget
of 0”2—was able to build a prototype alerts service by
combining these modules.

However, he quickly found that he had to address
data quality issues before the service could be offered
to patrons. Publisher-provided MARC records did not
consistently handle middle initials and sometimes mis-
spelled author names, meaning that a single author
could be represented by a variety of terms. All these
terms needed to be combined in order to offer patrons
a single term they could subscribe to.3 This single term
is an element of his site’s taxonomy, which in turn
is generated from MARC records in the Drupal site
(which are distinct from MARC records in the catalog).
Therefore, Weaver needed to compare his publisher-
provided MARC records with his catalog versions and
create records with canonical names that he could feed
into his Drupal site.

In Weaver’s marcreupload repository, the marc_
upload_page script provides a front end for sub-
mitting MARC records, including a Levenshtein dis-
tance function that automatically suggests several

11

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

close-match spelling options for author names. Records
submitted through this page are processed by the
authorchange script, which we examine here. Fol-
low along at this link:

Matt Weaver’s authorchange script
https://thatandromeda.github.io/ltr/Chapter2.html

Line 1 simply tells the computer that this is a PHP
script. Line 2 includes the PHP library for processing
MARC records, which we’ll need later.

Lines 3–14 harvest data from the MARC record
submitted through the form on marc_upload_page
and store it as variables for later use. An important
variable here is $closest; this is an array of the
author names from our catalog that are the closest
match to the author names submitted in the form.

Lines 15–19 write HTML; this is the web interface
presented to the human using the script, and it’s how
we’ll display feedback. (Keep in mind that this script
also has a machine audience: the Drupal site that will
be consuming the MARC records it generates.) All sub-
sequent lines that begin with echo are also writing
HTML, which provides feedback to the user, and will
be skipped in this read-through.

Line 21 initializes the $arraypos variable; this
is how we’ll keep track of how many times we’ve iter-
ated through the upcoming loop.

In line 22, we begin the loop that will take up
the remainder of the program. Broadly speaking, what
we’ll do in this loop is look through each submitted
author name, compare it to the corresponding closest-
match name, and create records for the Drupal site if it
seems correct to do so.

In line 23 we increase the $arraypos counter by
one (the ++ syntax, meaning “increase this number by
1,” is common to many languages). In this loop, we’re
processing several records. When we generate a new
MARC record for the first author name, we want to
make sure we’re comparing it against the first name
in the closest-match array and using MARC field data
from the first submitted MARC record (and so on for
the second and subsequent records). Keeping track of
this counter lets us be sure to look in the right place for
all our information.

In line 28, we check to see if the author name
we’re currently examining is the same as the corre-
sponding closest-match name. If it is, we’ll write a
MARC record; if it’s not, we’ll skip processing—this is
a case that requires human judgment.

Assuming the names match, in line 32, we create
an empty MARC record, which we’ll call $marc. Line
33 sets its leaders to be the same as those in the sub-
mitted record. Lines 34–37 create a new MARC 008
field using the same information as in the 008 field

of the submitted MARC record. (Note that we use the
$arraypos variable to select the first, second, etc.,
from the array of submitted 008 fields, as appropri-
ate.) We then append that field to $marc.

Lines 38–60 proceed in the same manner, copy-
ing data from the submitted MARC record to the new
one being created. Line 44 varies this slightly, using
the author name from the closest-match array (which,
you recall from line 28, exactly matches the submit-
ted author name).

In line 63, we check to see if we’ve successfully
generated a MARC record. If so, we tell the user
we’ve written a file for it; if not, we inform the user
accordingly.

Lines 66–69 actually write the MARC record for
our Drupal site to our output file.

Line 72 connects back to the if condition that
we opened in line 28. All the lines since then have
been handling the case where the author name and
the closest-match name are the same. The else in
this line switches us to the alternative case. If we don’t
have matching names, we can’t generate an authorita-
tive record, so we simply inform the user of this (line
74) and move on. The remaining lines close all our
unclosed code blocks to complete the program.

Weaver’s script underscores several issues of soft-
ware development process that numerous respon-
dents commented on. One is the importance of look-
ing for existing code rather than building from scratch.
Although Weaver did write several scripts in the pro-
cess of getting LibALERTS to work, the vast majority
of the service resides in Drupal modules already writ-
ten by others; his code patches them together. Many
people, with development budgets similar to Weaver’s,
will find that this is much more achievable than writ-
ing things from scratch. It’s often better practice, too,
since existing modules benefit from the development
expertise and user testing of large communities and
get quicker and more thorough bug fixes than in-house
code produced with limited labor.

Another issue is iteration. Very few programs work
right the first time. Even if they’re bug-free (which is
rare), developers usually can’t envision exactly what
users might need to do or all the special cases the code
might end up needing to address. In this case, Weaver
discovered the data quality issues by writing the pro-
totype version of his code and seeing where it encoun-
tered problems. The authorchange script is part of
how he solved those problems.

This shouldn’t be viewed as a failure of the first
script, by the way. Fred Brooks, in his classic of soft-
ware project management, The Mythical Man-Month,
said you should expect at least half your time to be
spent on testing and debugging—and the more com-
ponents you find yourself integrating, the longer the
overall time to completion.4 Planning for iteration is
simply responsible software practice.

12

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

So how would you iterate this program from here?
Things to try include these:

• As a Pythonista with limited PHP skills, I had trou-
ble reading this program and found myself refor-
matting it in order to analyze it. In particular, I
reflexively applied semantic whitespace—indent-
ing the contents of for loops and if conditions to
make the code blocks stand out more clearly on
the page. How could you reorganize and comment
the marc_upload_page script to make it easier
to read?

• Determine: is copying the leaders from the exist-
ing record valid? If we’ve changed author names
or failed to preserve any MARC fields between
marc_upload_page and authorchange, the
leaders no longer accurately represent the length
of the file. The setLeader function from PHP’s
MARC library explicitly does not perform any vali-
dation, so we can easily end up with invalid lead-
ers. Figuring out if this is a problem in our case
requires analyzing marc_upload_page and con-
sidering the input data (which may vary in differ-
ent contexts, depending on local cataloging prac-
tices). If we can’t safely copy the leaders, what
should we do instead? (Alternatively, we could
skip the entire analysis if we simply planned to
generate leaders rather than copy them. Consult
PHP’s MARC module source code and documenta-
tion to see if it has that functionality.)

Record.php, containing the setLeader
function, from PHP’s MARC library
https://github.com/pear/File_MARC/blob/master/File/
MARC/Record.php

• The marc_upload_page and authorchange
functions handle authors in the 100 field, but

don’t handle additional authors from the 700
field. However, patrons who are interested in new
works by particular authors may want to see their
coauthored works as well. How can we add sup-
port for this?

Scripts in This Chapter

nina de jesus’s script
http://satifice.com/2014/10/22/exporting-the-
metadata-of-a-range-of-handles-in-dspace

Hillel Arnold’s script
https://gist.github.com/
helrond/1ef5b5bd47b47bd52f02

Becky Yoose’s script (edited)
https://github.com/LibraryCodeYearIG/MARC-record-
edit

Matt Weaver’s authorchange script
https://thatandromeda.github.io/ltr/Chapter2.html

Notes
1. See Westlake Porter Public Library, LibALERTS web-

page, accessed December 15, 2014, www.westlake
library.org/libalerts.

2. Matt Weaver, “LibALERTS: An Author-Level Subscrip-
tion System,” Code4Lib Journal, no. 18 (October 3,
2012), http://journal.code4lib.org/articles/7363.

3. See Weaver’s Code4Lib article (cited in note 2) for
sample code handling this issue.

4. Frederick P. Brooks Jr., “The Mythical Man-Month,”
in The Mythical Man-Month: Essays on Software En-
gineering, Anniversary Edition, 20, (Boston: Addison-
Wesley, 1995).

13

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

In chapter 2, we saw scripts that helped librarians and
archivists who were limited by issues of data qual-
ity and data portability. In this chapter, we’ll take

one step closer to front-end users by looking at scripts
that aid reporting. These scripts are all about organiz-
ing and querying the available data and presenting it
to library staff—some of them nontechnical—in ways
that aid decision making. They analyze logs to high-
light actionable information, simplify workflows, and
expand the capabilities of the ILS.

Examples

Two survey respondents wrote scripts to analyze logs.
Stuart Yeates found that his web server was under
attack from bots that ignored his robots.txt file; his
bash script (figure 3.1) picked out the relevant lines
from his logs and sorted them. This let him find the
major traffic sources (i.e., bots) and defend against
them, improving server performance. Robin Camille
Davis wrote a Python script to analyze EZproxy logs.
EZproxy logs an enormous amount of data, which can
make it hard to find what you’re looking for; her script
let her zero in on usage patterns by different patron
categories (e.g., students vs. faculty) and graph how
usage changed throughout the year.

As Davis noted, “We can get pretty good usage
stats from the individual database vendors, but with
monthly logs like these, why not analyze them your-
self? You could do this in Excel, but Python is much
more flexible, and much faster, and also, I’ve already
written the script for you.”1 In a blog post, she dis-
cusses how and why she wrote the script, changes
you may need to make to run it on your own logs,
and other questions you could answer by modifying
the script.2 (The need to make changes to get others’

scripts working in your own environment is recurrent,
and we’ll tackle it in more depth later this chapter.)

Robin Camille Davis’s script
https://github.com/robincamille/ezproxy-analysis/blob/
master/ezp-analysis.py

Three survey respondents wrote scripts that gener-
ate reports as part of improving various library work-
flows. We discussed Annie Glerum’s quality control
script in the last chapter. Matthew S. Collins wrote a
Python script to “check a list of ISBNs from a publisher
catalog against our holdings to see what we already
have or need to order,” saving time in the acquisi-
tions workflow. Joe Montibello helped his preserva-
tion librarians, who were dissatisfied that they didn’t
have good metrics on which parts of their collection
had been crawled by LOCKSS. He came up with an
algorithm to estimate when crawling would be com-
plete. Like many survey respondents, he had his pro-
gram write its output to a spreadsheet so that it would
be easy for his nonprogramming colleagues to inte-
grate into their existing workflows. By automatically
generating this spreadsheet as a shared Google doc,
he also saved his own time in reporting out, since his
coworkers could check the spreadsheet whenever they
were curious rather than needing to ask him.

tail -100000 /var/log/httpd/access-
nzetc.log |grep facet |awk ‘{print
$1}’|sort | uniq -c | sort -n

Figure 3.1
The entirety of Yeates’s bash script

Reporting

Chapter 3

14

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

Joe Montibello’s script
https://github.com/joemontibello/update-lockss

Finally, three respondents wrote scripts to fill gaps
in ILS reporting capacity. Sam Kome simplified weed-
ing by writing a script that “identified print volumes
that met a set of rules for de-accession including a rule
that [they] be held at more than one of 50+ libraries
in our lending network.” Cindy Harper found her seri-
als module “cumbersome,” so she wrote her own script
that lists what’s been sent to the bindery and what
needs to be claimed. The third reporting script, below,
is the subject of this chapter’s deep dive.

Deep Dive: Automated ILS Reporting

Esther Verreau wrote an array of scripts (available
on GitHub) that “pull stats from the Sierra ILS and
report it to the appropriate destinations, Shoutbomb,
Civic Technologies Community Connect and Novelist
Select.” Some of these had originally been written in
Millennium’s scripting language, but they were “error
prone and difficult to maintain” and became obsolete
after an upgrade. The new Python scripts run essen-
tially without human intervention.

Esther Verreau’s scripts
https://github.com/everreau/sierra-scripts

These scripts cover an array of uses. One generates
RSS feeds of new items (compare with LibALERTS,
chapter 2). Another generates an internal report of
how many patrons had maxed out their holds; this
allowed the library to use real data to decide whether
it needed to change its holds policy. Indeed, a striking
fact about Verreau’s scripts is how many of them are
experimental—written not to provide a new service,
but to let the library gather data on whether a new
service or policy would be helpful. Once people are
moderately fluent at writing code, one-time-use scripts
become reasonable to write. This lets people ask ques-
tions it wasn’t previously feasible to ask and answer
them with hard data.

Verreau’s novelist.py script exports metadata
from the library’s entire collection, writes it to a file,
FTPs that file to Novelist Select, and notifies someone
that it happened. Let’s walk through the script.

The latest version of the novelist.py#script
https://thatandromeda.github.io/ltr/Chapter3.html

The comments in Lines 1–14 describe the script’s
function and clearly indicate what future users will need
to change in order to run the script in their own envi-
ronments. These sorts of explanatory comments are best
practice because future users don’t necessarily know
what you were thinking and don’t want to spend time
puzzling through the code to find out. (This includes
you, six months from now, when you are guaranteed to
have forgotten what you were thinking today.)

Lines 17–25 import other Python functionality the
script will rely on. These include interoperating with
databases (psycopg2), the operating system (os),
and e-mail (smtplib).

Lines 27–31 define a function, strify, that the
program will use later when writing individual lines
of metadata to the output file. The notable thing here
is error handling—if obj == None: recognizes that
there may be some empty lines returned by the data-
base query and ensures that they don’t result in any-
thing being written to the output file.

Lines 33–41 also define a utility function, put_file,
which FTPs a file to a given directory. Like strify,
it shows error handling: if it encounters an exception
while trying to FTP the file, it prints the exception to
the console rather than letting the program crash. This
is a great early step in writing programs because it lets
you explore how they might fail. (Again, some degree
of failure is the normal case for programs; understand-
ing and handling failures is often more achievable than
avoiding them entirely.) More elegant revisions would
identify the specific types of exceptions that the pro-
gram encounters in practice and write thoughtful han-
dling of each. Depending on the nature of the problem,
good options might be logging the error, retrying the
file transfer in case the error was temporary, or remov-
ing broken lines from the file and attempting to send
the remainder while maintaining a record of the broken
lines for subsequent human intervention.

Lines 43–59 construct the database query in raw
SQL, pulling bar codes, titles, and unique identifiers
from the entire collection. While the rest of the program
could be used in any context, these lines rely on the spe-
cific ILS being used. Indeed, Verreau would write them
differently today because III’s new API would allow her
to dramatically simplify this part of the code.

For a sense of how much easier and more read-
able an API, using the same programming language as
its surrounding code, can be, have a look at the docu-
mentation for credit card processor Stripe. The right
sidebar shows how to charge a user’s credit card. On
Stripe’s end, this information all lives in a database that
can be queried in SQL, but the API lets you use simple
and Pythonic statements like stripe.Charge.cre-
ate() instead of constructing the SQL query. Indeed,
you need not know how the database is structured at
all, and your code does not have to change if Stripe
decides to change its database schema.

15

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

Stripe API documentation:
Creating a new charge
https://stripe.com/docs/api#create_charge

Lines 61–66 connect to the database and provide a
cursor we’ll be able to use to examine the results. This
cursor will let us step through the results line by line.

Lines 68–78 remove outdated files from our Novel-
ist directory and create today’s filename.

Lines 80–81 connect to the database and fetch the
results.

Lines 83–92 open our new file and write a title
line. The loop (indicated by for r in rows:) then
writes one line per record from the database, each on
a separate line (\n is the newline character). Once all
records have been written, it closes the file.

Lines 94–104 attempt to log in to the FTP server
and transfer the file. The message variable created
here is the body of the e-mail we will send in lines
106–114.

This program demonstrates several best practices:
comments, error handling, and descriptive variable and
function names. The functions strify and put_file
also demonstrate the usefulness of breaking logically
coherent units of functionality into actual functions.
By keeping them separate from the main body of the
program, we make the overall logic more readable; the
program reads like an outline, and we can dig into the
specifics only as needed. The program is also easier to
debug when you can isolate functionality and zero in on
the parts that may need to be fixed. In a larger program,
these functions could also be reused. For instance, if we
needed to FTP our output file to several servers instead
of just one, we don’t need to rewrite all that code—we
can just call put_file again. And if we found that put_
file was so useful that we needed to use it in multiple
programs, we could grow it into a library that could
be imported by other programs, just like this program
imports psycopg2, os, and smtplib.

Want to modify this program for use locally, and
practice your Python skills while you’re at it? Here are
some things you might try:

• Replace the SQL with a query suitable to your ILS
(ideally using an API).

• Have the program import all the local parameters
(like DB_NAME) from a separate file, and make sure
you keep that file out of GitHub so you don’t inad-
vertently share sensitive data. (For instance, name
it parameters.py, and add parameters.py
to your .gitignore.) Alternately, have it har-
vest this information from environment variables
(and add some error checking so that the program
will exit if it doesn’t have all the data it needs).

• Find out what kind of exceptions might actually
be thrown by the try/except clauses, and han-
dle them specifically.

• Add error handling in case the e-mail-sending fails.
• Think through what might happen if NOVELIST_
DIR contains files you didn’t expect (e.g., if it’s the
directory where text files for some other project
are being stored) and what you can do about those
risks.

• Identify some other case where you need to har-
vest data from your ILS and e-mail or FTP the
results. Modify this script to do that instead.

Scripts in This Chapter

Robin Camille Davis’s script
https://github.com/robincamille/ezproxy-analysis/blob/
master/ezp-analysis.py

Joe Montibello’s script
https://github.com/joemontibello/update-lockss

Esther Verreau’s scripts
https://github.com/everreau/sierra-scripts

Notes
1. Robin Camille Davis, “Analyzing EZproxy Logs with

Python,” Emerging Tech in Libraries (blog), April 22,
2014, http://emerging.commons.gc.cuny.edu/
2014/04/analyzing-ezproxy-logs-python.

2. Ibid.

16

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

Overview

The scripts in chapters 2 and 3 focused on back-of-
the-house functions: data quality and technical ser-
vices workflows. In chapter 4, we’ll talk about services
patrons interact with directly. One of the wonderful
things about coding in libraries is that it inherently
breaks down silos: while librarian coders often emerge
from technical services, they can be found anywhere,
and their work can affect—and link—numerous
library functions. A large fraction of library coders are
working on library website user experience or other
patron-facing services.

Many of these coders are driven by a motivation
cited at least as far back as the 1998 version of Eric S.
Raymond’s landmark essay on open-source software,
“The Cathedral and the Bazaar”—“scratching your
own itch.”1 Librarians use their library’s website, cata-
log, or other web services frequently, and thus encoun-
ter user experience (UX) frustrations that directly
affect patrons. Rather than live with inadequate lay-
out or features, they created functionality their system
lacked by going outside that system.

Any web product that lets you add some JavaS-
cript—even if you can only add it to the <head> and
cannot edit the rest of the page—gives you an opportu-
nity to make this sort of tweak. Therefore, JavaScript
is the language of choice for most code in this chapter
(sometimes augmented and simplified with the won-
derful jQuery library).

Examples

The examples in this chapter fall into four categories:
UX improvements, presentation of information in new
contexts, LibGuides tweaks, and patron services out-
side of the website.

UX Improvements

Three librarians surveyed wanted to improve the
search experience. Amy Wharton wrote a jQuery
script to add autocompletion of database names to her
search box, allowing users to more quickly find (and
correctly spell) what they needed. Joel Marchesoni
found that CONTENTdm allowed for Boolean search
operators but only through hacking the URL; his ASP
script allowed users to enter Boolean queries through
conventional search and built the URLs accordingly.
Chris Fitzpatrick wrote a CoffeeScript that harvests
ISBNs from a page of search results from the Blacklight
discovery interface, grabs the corresponding cover
image from Google, and enriches the results page with
the images—all in a mere twelve lines.

Chris Fitzpatrick’s script
https://gist.github.com/cfitz/5265810

Blacklight
http://projectblacklight.org

Rachel Donohue wanted to simplify the pro-
cess of creating accessible content. As her employer,
the National Agricultural Library, a US government
agency, has a section 508 compliance mandate, so
accessibility is a must; however, Neatline, the Omeka
plug-in it uses to create time lines for digital exhib-
its, doesn’t generate compliant content. Her Ruby
script makes it fast and simple to provide an accessible
alternative.

Rachel Donohue’s script
https://gist.github.com/sheepeeh/10417852

Patron-Facing Services

Chapter 4

17

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

Two librarians, Matthew Reidsma and Jason
Bengtson, wrote scripts to display the library’s hours,
including whether it is open right now. It’s intriguing
to look at these side by side because—while they’re
both JavaScript programs that display open/closed
status on a library website—they’re written very dif-
ferently. Bengston’s includes special-case handling for
holidays, while Reidsma’s covers only standard hours.
However, Reidsma’s encodes schedule information in
a significantly simpler format, which enables him to
write much more concise, readable code.

Matthew Reidsma’s script
https://github.com/gvsulib/Today-s-Hours/blob/master/
todayshours.js

Jason Bengtson’s script
https://github.com/techbrarian/openchecker/blob/master/
openchecker.js

This comparison illustrates how much of software
engineering is driven by brainstorming all the special
cases code might need to handle and making choices
as to which ones are worth handling in your context.
It also underscores the role that aesthetic sensibilities
play. There’s more than one right way to write pro-
grams—in a sense, anything that consistently produces
correct results is right. However, authors have differ-
ent stylistic preferences, and their intuitions about ele-
gance can enormously impact the final result.

Repurposing Information in New Contexts

Just as technical librarians’ jobs often break institu-
tional silos, technical librarians’ work can break con-
tent silos. One of the common frustrations of both
library software architecture and library user experi-
ence is that information is held in separate systems
even when it may be used in shared contexts; the three
scripts in this section take information from where it’s
found to where it’s needed.

Indeed, Michael Schofield phrased his JavaScript
in terms of breaking silos: “I basically wrote a small
API that [took] content that was previously silo’d on
whatever platform—LibGuides, WordPress, etc.—and
let it syndicate itself around our web presence with-
out having to be duplicated.” For instance, “if a patron
is looking for business resources and we happened to
have a scholarly speaker presenting about business,
the API would suggest the event to the user.”

Coral Sheldon-Hess also wrote something to syn-
dicate content: in her case, a social media aggregator
that pulled content from her library’s various social
media presences into a single home page display area.

While they could have used existing WordPress mod-
ules, RSScache offered better performance. She modi-
fied this tool to be consistent with her library’s brand-
ing. (Modifying existing code is often easier and less
buggy than writing your own from scratch, as well
as being a great starting point if writing your own
sounds daunting.) This new website feature “helped
us kind of institutionalize social media” by featur-
ing it prominently and unifying previously disparate
content. Seeing their new items pushing down older
entries also gave the social media team an incentive
to write more.

RSScache
www.rsscache.com

Jason Simon wanted to offer subject access to
research databases. He had alphabetical lists hard-
coded into HTML, but these were time-consuming and
error-prone to update; since any given database could
appear on multiple subject pages, changes had to be
made in each page for every update. Instead, he stored
information about which research databases served
which subjects in a separate database and wrote a PHP
script to pull information from this database and write
it automatically into their subject guides.

Subsequently, this project grew organically to
encompass new functions, ultimately becoming a
“larger back-end homemade ERMS which made it a lot
easier to manage subscriptions, statistics, pricing, hold-
ings, etc., for both databases and periodical subscrip-
tions.” This points to something that’s important to keep
in mind if you’re a new coder feeling overwhelmed by
the size of open-source projects you’ve looked at—they
didn’t start out big! In fact, they may not have been
started to tackle large problems at all. You can start by
writing something small, and along the way you’ll learn
how you might want to expand it and the skills you
need to do so. Conversely, if you know the thing you
need to write is large, break it down into the smallest
useful pieces and write them one at a time. Other peo-
ple’s software projects didn’t spring fully formed like
Athena, and yours needn’t either.

Springshare Customization

Four survey respondents made changes to their insti-
tution’s handling of Springshare products, particu-
larly LibGuides. These changes spanned the use cases
above—user experience changes and information
reuse—but three of them are grouped here to show
the variety of possibilities for augmenting this widely
deployed product line. The fourth will be the subject
of this chapter’s deep dive.

18

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

Eric Phetteplace’s library, Chesapeake College (a
hybrid community college/public library), used a wide
range of Springshare products for recording library sta-
tistics. However, the input forms didn’t limit librarians’
choices to the recording schema used at Chesapeake; as
a result, invalid entries made it hard to analyze the data.
Phetteplace installed Tampermonkey on staff comput-
ers, which allows for installing additional userscripts—
snippets of JavaScript that function as browser plug-ins.
He then wrote a userscript that validated form entries
before submission, requiring staff to enter valid data.
This made it much easier to analyze the data, which
in turn helped the library make better choices about
how to staff their desks; for example, it could see that it
got more computer support questions early in the term
and more reference questions near finals and assign
desk coverage accordingly. It also helped the library to
communicate more effectively with other departments
about library usage and impact (see chapter 5).

Tampermonkey
http://tampermonkey.net

At Ohio University Libraries, staff had an array of
subject-specific LibGuides and wanted to make sure
students looking at the Course Reserves page knew
about this option. While the OPAC allowed the library
to insert links to LibGuides into those pages, doing so
manually would have been prohibitively time-consum-
ing at this school of over 20,000 students. Staff were
also concerned that placing links to LibGuides in line
with assigned course readings might irk faculty by
lessening their control over the content of the course
readings area. Instead, Carrie Preston wrote JavaScript
(building on the extremely useful jQuery library) that
automatically inserted a link to the LibGuides page,
including the name of the relevant subject category, in
a special block toward the top of the page. You can see
it in action on Ohio University’s ALICE catalog.

ALICE catalog
http://alice.library.ohiou.edu/search~S7?/
rcoms/rcoms/1%2C26%2C29%2CB/
frameset&FF=rcoms+4060&1%2C%2C2

Bohyun Kim had the inverse problem. Rather than
needing to add LibGuides to course resources, she
needed to add course resources to a LibGuide—in her
case, hundreds of e-textbooks that were hard to find in
the catalog. She had a student worker who was comfort-
able finding and organizing them but was not comfort-
able writing HTML, and she wanted to ensure that the
end product was compatible with the library’s custom

LibGuides styling without onerous proofreading on her
part. She wrote a web page in HTML and JavaScript
(again, taking advantage of jQuery) where her student
worker could enter metadata in a human-friendly for-
mat. The script then produced appropriately format-
ted HTML that the student could copy and paste into
the LibGuide. You can see the end result, with dozens
of e-textbooks alphabetized and properly formatted, on
the school’s Course E-Books web page. Kim also wrote
an ACRL TechConnect post that walks through the code.2
(There are only eleven lines of JavaScript!)

Course E-Books
http://LibGuides.medlib.fiu.edu/courseebooks

Bohyun Kim’s script
https://github.com/bohyunkim/examples/blob/
master/link.html

Services outside the Web

While most respondents were using code to affect
either metadata or the website—that is, strictly com-
putational objects—a few used code to improve ser-
vices in other domains.

Matt Weaver (whose author name preprocessing
script we saw in chapter 2) says, “We purchased a digi-
tal signage system from a reseller that didn’t really do
what we wanted it to do in the first place, and to get it
to do something close would have meant a workflow
would not have been manageable for one employee.”
The library wanted the system to display its meeting
room schedule, but it could not queue up information to
show at set times; staff had to manually change the sign
message throughout the day. Weaver’s Python script
allowed staff to deposit files with event data into a par-
ticular folder whenever it was convenient for them to
do so. It then pushed the information to the signage
software at the appropriate times. Ultimately, “the code
rescued a rather expensive, and unpopular project.”

In addition, Mike Drake (Deputy Director, Tulare
County Library, Tulare, CA) wrote a script to help
his children’s librarians give better, faster answers
to questions like “Do you have any princess books?”
In his words, “Some of the most popular books in
the children’s area are dispersed all over, in differ-
ent collections. And, most of them are checked out.
For example: Disney Princess can be in easy readers,
picture books, or juvenile fiction; and filed under sev-
eral different authors. Our OPAC will only allow us
to check the location and status of each title one at
a time; and it can be very tedious. I wrote a program
that will search the OPAC over the web and return
results only for titles that are available, in a single list,

19

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

sorted by collection/author. This list can be printed by
the librarian, and then the hunt begins!”

While this can be read alongside the UX improve-
ments scripts earlier as another example of transcend-
ing the limitations of the OPAC, from a patron per-
spective it’s entirely different. The patrons probably
never know that their librarian wasn’t using standard
library software or that anyone wrote code; most of
them probably don’t know what code is. They just
know that the librarian was able to get them princess
books without delay.

Deep Dive: LibGuides Organizer

Jeremy Darrington (Princeton University Library)
wrote JavaScript to organize LibGuides to handle an
information overload problem. He had some topics for
which the library could offer lots of relevant resources,
and he wanted to make sure the students could access
them all. However, with so many boxes on a page, it
was hard for students to navigate the options or get an
overall sense of the holdings. He didn’t want to clut-
ter the page with too many tabs, either. Instead, he
wanted to provide a sidebar table of contents listing all
available sections and display only the currently active
section so that users didn’t feel overwhelmed. Users
then could click on the table of contents to selectively
reveal sections of interest.

You can see a screencast of the result of the page
organizing script on the Princeton website. The page
also provides clear, comprehensive instructions on
incorporating the script into your own site. (It’s based
on the older version of LibGuides; LibGuides 2.0
natively incorporates a similar side nav option.)

Page-organizing script screencast
http://LibGuides.princeton.edu/content
.php?pid=254621&sid=2824241

The code itself is available on the Princeton site.
It’s beautifully commented, making clear what each
section of the code is doing, as well as specifying the
CC BY-NC-SA license. Like a lot of JavaScript, it relies
on some understanding of HTML and CSS; if you’re
rusty on those, pull up a tutorial or reference for them
as well. Now, let’s dive in!

Jeremy Darrington’s script
https://thatandromeda.github.io/ltr/Chapter4.html

Lines 6–8 tell the browser that this function should
operate on the document, once it’s been fully loaded.

They then initialize two variables (that is, create them
and assign initial content). These are the lists where
we will be storing IDs and titles of the various con-
tent boxes (made clear by the excellent variable names
$boxID and $boxTitle). Right now they’re empty,
but we’ll add content over the next few lines.

Lines 10–18 get the titles of the boxes. The CSS
selector in line 10 specifies the header elements of
our content boxes. Line 11 gets the actual text of
the header; lines 12 and 13 test whether it matches
a given regular expression. (Regular expressions are
ways of specifying patterns of characters; this one
means “a number followed by a right parenthesis.”
This will match the beginning of each line in a list—
1), 2), and so on.) If the text and the regular expres-
sion match, the code strips off the matching part (the
1), 2), etc.) and adds the remaining text of the header
to our list. If there’s no match, it adds the entire text.
We now have the text of the entries in our table of con-
tents, with unimportant item numbers removed.

Was the regular expression strictly necessary? No;
we could have simply added the entire text. Had I been
writing this script, the first version would have done
just that—and then, after testing it on some LibGuides,
I’d have discovered that some table of contents entries
had 1) or 2) in front of them and some did not. I
would have decided that looked weird and added the
regular expression to normalize the formatting. This
is not necessarily how Darrington proceeded, but this
sort of iterative code-test-debug-code process under-
lies many programs.

Lines 20–21 get the ID attributes of those same
boxes and store them in the $boxID variable defined
earlier.

Lines 24–27 find the box we’re going to put the
table of contents in. This is a box that was set up dur-
ing LibGuides configuration, as detailed in the screen-
cast. The HTML IDs that we’ll use to find this box (via
the selector in line 24) are defined by the LibGuides
template. It starts out empty, but in lines 25–27 we
loop through $boxTitle and $boxID—the lists we
defined earlier, containing the IDs and titles of our
content divs—and add entries to our table of contents.
Each time through the loop, we add one line that has
a box title as text and that uses the box ID to construct
a link. At the end, we have a table of contents. The
remaining lines will make it work in the desired man-
ner, hiding and showing page content depending on
the currently active link.

Note that these lines assume that the first entry in
the $boxTitle list corresponds to the first entry in the
$boxID list —that is, they assume we harvested both
from the same place. This happens to be true because
the div[id^="wrapbox"] selector we use in lines
10 and 20 to find those boxes always returns them in
the same order, and (in those same lines) .each()
loops through them in the same order each time, and

20

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

we can count on the lists $boxTitle and $boxID
storing them in the same order we added them. There-
fore, we can safely ignore order in this code. However,
there are programs where that isn’t the case (for exam-
ple, in Python, lists are stored in order, but dicts are
not; when you read a dict, you are not guaranteed to
see information in the same order that you wrote it).

Lines 31–51 check the URL the browser is cur-
rently pointed at (this is the location in line 31)
to see if it has an anchor at the end (like #foo; this
is the .hash part of line 31). We’ll do slightly dif-
ferent things in the scenario where it has an anchor
and the scenario where it doesn’t, using different code
blocks (respectively, lines 32–45 and lines 47–51).
The curly braces signal to the computer where these
code blocks begin and end; the indentation is optional
but makes it much easier for humans to keep track.

If there is an anchor in the URL, we’ll assume that
the user has just clicked on one of the table of contents
links (all of which have anchors) and hide or show
content accordingly, using the code in lines 32–39.
Line 32 gets the ID of the desired box from the anchor
link text (ignoring the # character at the beginning,
which is used by the browser to interpret the URL but
is not part of the HTML ID attribute). Lines 33–34 can
be ignored—they’re commented out and thus presum-
ably represent failed experiments from the process of
writing the code. Lines 35–39 loop through all the box
ID numbers on the page. When they get to our desired
$boxNum, they show the box, scroll the window to it,
and add highlighting to its line in the table of contents
to make it clear to the user what the currently active
content is. For all other IDs, we hide the div to avoid
cluttering up the interface. We’re now done processing
the scenario where there’s an anchor in the URL, and
the program will skip down to line 53.

If there isn’t an anchor in the URL, we’ll skip lines
32–39 and instead process lines 47–51. In this sce-
nario, we assume the user has just loaded the page
(using its base URL) and should be shown the first con-
tent box with the first line of the table of contents high-
lighted. Lines 47–49 hide all content divs except the
first (LibGuides displayed them all by default). Lines
50–51 highlight the first line in the table of contents.

To summarize, at this point we’ve done the
following:

• collected information from our page that we’ll
need to build the table of contents and connect its
entries to content areas on the page

• checked the URL to see what the user’s currently
selected content area is

• made sure the corresponding line in the table of con-
tents is highlighted so users know where they are

• made sure the corresponding content block is
shown and the rest are hidden to keep the screen
from being cluttered with irrelevant content

All we have to do now is ensure that, if the user
selects a new line in the table of contents, the high-
lighting shifts to that line, the old content box is hid-
den, and the new one is revealed; we accomplish this
in lines 53–69. Line 53 specifies that this code block
is a function that is triggered whenever the user clicks
an element whose class is boxNav. (This is the class
name that Darrington applied to his table of contents
entries in line 26.) In lines 54–55, we find the cur-
rently highlighted entry and remove the current-
Nav class (thereby removing the highlight styling).
Lines 56–57 find this—a special JavaScript keyword
that here represents the element the user clicked—and
add the styling that indicates it’s the currently active
nav entry. Lines 58–69 then loop through the con-
tent areas in the LibGuide, showing (and scrolling to
the top) the one that corresponds to the active table of
contents entry and hiding the remainder.

Scripts in This Chapter

Chris Fitzpatrick’s script
https://gist.github.com/cfitz/5265810

Rachel Donohue’s script
https://gist.github.com/sheepeeh/10417852

Matthew Reidsma’s script
https://github.com/gvsulib/Today-s-Hours/blob/master/
todayshours.js

Jason Bengtson’s script
https://github.com/techbrarian/openchecker/blob/
master/openchecker.js

Bohyun Kim’s script
https://github.com/bohyunkim/examples/blob/master/
link.html

Jeremy Darrington’s script
https://thatandromeda.github.io/ltr/Chapter4.html

Matthew Reidsma and Kyle Felker’s 360Link
Reset
https://github.com/gvsulib/360Link-Reset

Matthew Reidsma’s snippets on GitHub
https://gist.github.com/mreidsma

Grand Valley State University Libraries scripts
on GitHub
https://github.com/gvsulib

Matthew Reidsma’s repositories on GitHub
https://github.com/mreidsma

21

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

And now we’re done! When users load the Lib-
Guide, it will show only the first (or active) content
area, with the table of contents highlighted accord-
ingly; when they click on the table of contents, the
corresponding content will be displayed and the rest
hidden. Now Darrington can add quite a lot of content
to a LibGuide without overwhelming or confusing the
user, as long as he organizes it into logical chunks.

What are some key takeaways from the code?
First, clear comments are a great service. Because this
code is organized into logical sections and each has an
explanatory comment, it’s clear what each section of
the code is doing even if you don’t speak JavaScript.
This also makes it much easier to figure out where to
look if you’d like to write similar code or change one
aspect while keeping the remaining functionality.

Several lines of this code (e.g., 10, 20, 53) also
illustrate that JavaScript is often very tightly bound to
the HTML of the page it operates on. Changing a sin-
gle class name or displaying content inside a different
element breaks many JavaScripts, as they can no lon-
ger find the content they were meant to operate on.
On the other hand, if you can control the HTML of a
page, or at least have high confidence it won’t change,
JavaScript gives you a great deal of power. Once you
know where to find the information you need (using
CSS selectors), you can hide, show, move, and refor-
mat it on the fly. By writing a custom stylesheet and
using JavaScript to add or remove classes from that
stylesheet as needed, you can (re)define a page’s lay-
out, appearance, and usability.

Better yet, you can do this even if you’re working
with a product that doesn’t let you edit the <body>
of the HTML but does let you insert CSS and Java-
Script into the <head>. If you read the HTML thor-
oughly, you can generally construct CSS selectors
that uniquely identify parts of the page you’d like to
change; you can then write JavaScript to target those
parts. Using this technique, Matthew Reidsma and
Kyle Felker entirely redesigned Grand Valley State
University’s 360Link implementation. This let them
not only improve design but also address concerns that
had arisen during usability testing. For this and other

examples of improving user experience through JavaS-
cript, explore the GVSU Libraries’ and Matthew Reids-
ma’s personal GitHub repositories.

Matthew Reidsma and Kyle Felker’s
360Link Reset
https://github.com/gvsulib/360Link-Reset

Want to modify Darrington’s program for use
locally and practice your JavaScript (and jQuery and
CSS) skills while you’re at it? Here are some things you
might try:

• Lines 32–39 assume that any anchor in the URL
actually corresponds to an element on the page;
they don’t defend against the possibility that a
user has edited the URL. What happens if the URL
has an invalid anchor? If the outcome is bad, can
you check for validity before deciding whether to
run the code?

• Change the appearance of the highlighting applied
to table of contents entries. This actually isn’t a
JavaScript question at all; the styling comes from
the CSS rules defined for the currentNav class
(in a separate file). Merely changing the CSS,
without touching the JavaScript, can give you
very different results.

• Write something inspired by this script that works
with LibGuides 2.0.

Notes
1. Eric S. Raymond, “The Cathedral and the Bazaar,”

First Monday 3, no. 3 (March 2, 1998), http://first
monday.org/article/view/578/499; Eric S. Raymond,
The Cathedral and the Bazaar website, February 18,
2010, www.catb.org/~esr/writings/cathedral-bazaar.

2. Bohyun Kim, “Playing with JavaScript and
JQuery—The Ebook Link HTML String Generator
and the EZproxy Bookmarklet Generator,” Tech-
Connect Blog, April 8, 2013, http://acrl.ala.org/
techconnect/?p=3098.

22

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

The original concept of this report encompassed
only code samples and analyses and learn-to-
code resources. However, survey responses dis-

cussed the political and social dimensions of library
code so often as to make them inseparable from the
technical dimensions.

Sometimes, this was positive. Matt Weaver’s digital
signage code (chapter 4) “rescued a rather expensive,
and unpopular project”; along the way, he “learned
a lot about the emotional impact a technology proj-
ect can have across staff.” Coral Sheldon-Hess’s RSS-
cache code (chapter 4), which enabled the library to
display its diverse social media presences on its home
page, incentivized staff members to write more social
media content because they were excited to see their
new material on top. Hillel Arnold’s Captain’s Log was
written specifically to solve a communication prob-
lem, giving staff from different reading rooms an easy
way to leave each other notes.

Hillel Arnold’s Captain’s Log
https://github.com/RockefellerArchiveCenter/captains-log

Respondents wrote of positive emotional impacts
on themselves, too. Evviva Weinraub Lajoie discov-
ered “I was capable of building something that thou-
sands of people across the world use to access elec-
tronic resources, which was really quite powerful and
empowering for me.” Several people wrote of their
pleasure when their code or documentation helped
coworkers to advance their own skills. Jeremy Dar-
rington (chapter 4) said, “I like that coding makes me
feel that I’m not helpless, that I can solve some of the
problems I face with tools at my disposal.”

On the other hand, not all emotional responses
were so positive. Many library coders spend a signifi-
cant amount of time trying to cultivate buy-in, educate
their colleagues about technology, or work against
siloed organizational structures as they produce inher-
ently cross-departmental work. Code can challenge
hierarchies and change workflows, leading to resis-
tance. And, as one librarian writes, “there are folks
out there who will hold on to their assumptions about
how patrons use library tools no matter what data you
show them. (And a corollary, if your data goes against
assumptions that are necessary for the survival of a
way of thinking or a business, look out. Folks will get
NASTY.)”

Coding in libraries often requires the political
skills to generate buy-in, surmount institutional bar-
riers, and navigate relationships with management
who don’t understand what you do. Managers who do
understand, or are sympathetic to, coding may face
similar challenges on their supervisees’ behalf. This
chapter outlines issues respondents faced and tech-
niques they used to support and advocate for their
projects.

Library Coders’ Job
Descriptions and Realities

One complication for many library coders is that their
job descriptions don’t necessarily involve coding. They
may have duties that can be achieved far more quickly
and effectively with code than by traditional means,
or indeed that require at least occasional code editing
to be accomplished, but coding is nowhere in the job
description. As Carrie Preston puts it, “Certainly my
supervisors in my earliest positions never conceived of

Political and Social
Dimensions of Library Code

Chapter 5

23

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

my job as being ‘about coding,’ and I think my activi-
ties remained largely mysterious and unfathomable in
their eyes.”

In some cases, this can make professional develop-
ment and managerial support hard to come by, even
when management recognizes the quality of employ-
ees’ output. Other librarians, like Angela Galvan, find
that “My job description and what I actually do all day
are increasingly disconnected things.” This may result
in a tacit, laissez-faire kind of support, as long as the
required work is getting done somehow. On the other
hand, a substantial minority of librarians surveyed
found that coding became an official part of their jobs,
incorporated into subsequent job descriptions, as man-
agement recognized its value. For example, Carrie
Preston found that “eventually some other members
of the cataloging department began to use some of the
scripts I wrote, and batch editing and batch loading of
bibliographic data (which often involves some coding)
did become a formal job responsibility.” Josh West-
gard is now in a job that is about half coding because
he “advocated for the automation of many previously
manual tasks.”

Across the board, librarians with tech-savvy man-
agers had an easier time getting support for their cod-
ing activities (whether formal, like courses, or infor-
mal, like time to code at the office as long as the work
got done). While many librarians did not indicate
whether their managers also had coding skills, 100
percent of those who said their managers were tech-
savvy also said they had received some professional
development support. Similarly, 100 percent of the
coding librarians who are also managers mentioned
offering professional development support for cod-
ing skills to their supervisees. Indeed, several respon-
dents who are not managers create and run technology
workshops for their coworkers.

Buy-in

One issue that came up frequently was buy-in.
Although library coders are often solo, and individuals
can do a lot with code, it’s hard to turn code into a use-
ful service for the library without cooperation. Access
to testing and deployment servers, authority over web-
site content, and time for developing and maintain-
ing projects all need institutional support. Numerous
respondents talked about both strategies for gaining
that support and limitations when they didn’t get it.

Bohyun Kim recommended Tito Sierra’s exception-
ally useful Project One-Pager. This is a document writ-
ten collaboratively by stakeholders in order to come
to a shared understanding of a project. It specifies key
information like project scope (including what’s out of
scope), deadlines, and participants. Not only does this
shared understanding promote buy-in, but it also helps

everyone see when a project is finished and get the
morale boost that comes along with successful project
completion.

Project One-Pager
www.slideshare.net/tsierra/the-projectonepager

Coral Sheldon-Hess has also achieved buy-in
through documentation. She worked with the web
team to write up guiding principles for web design,
content, and process.1 Through researching this docu-
ment, her team reached a shared understanding of best
practices; by writing them down, they generated a ref-
erence point for the library as a whole. Sheldon-Hess
shared her thoughts on this process in a 2013 LITA
Forum presentation.2

Documentation can be useful for buy-in through-
out a project life cycle, too. Terry Brady notes that it
“can allow users to learn at their own pace and to re-
visit the documentation as often as needed. This is a
great approach to achieving buy-in for a solution.”

Other respondents achieved buy-in through
directly demonstrating the value of library code.
Robin Camille Davis did a live coding demonstration
of her EZproxy script (chapter 3), and “the people I
was with at that demonstration (the systems librarian
and the systems manager) were very impressed and
got that ‘We can do ANYTHING with Python!’ gleam
in their eyes.” Other respondents recommended pilot
projects. Often it’s hard to talk about what code can
do in the abstract, but people respond strongly to
prototypes.

Eric Phetteplace (chapter 4) found that his code let
his library do a better job of demonstrating its value
on campus. Once his form validation code ensured
that they were collecting sound reference statistics,
they could see that 60 percent of their questions were
about technical help. This helped the library advocate
for its role in computer literacy and challenge assump-
tions that it dealt only with books.

Several respondents, particularly in technical ser-
vices, were able to make strong arguments about the
time-saving value of code. We saw in chapter 2 that
Becky Yoose saved one to two weeks of cataloger time
every year by scripting a repetitive task. Similarly,
Carrie Preston noted that “as my department’s then-
only regular user of [OCLC Macro Language] scripts,
I had several times the cataloging productivity of any
other cataloger in that department, even while spend-
ing a smaller percentage of my time on cataloging.”
And Annie Glerum (chapter 2) found “that even with
reduced staffing, it is possible to achieve both quality
and timeliness.”

And, when all else fails, some coders go rogue. One
noted, “I have learned intentionally breaking systems

24

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

known to be fragile is a good way for me to gain the
permissions I need to do the work I’d like.” Of course,
it’s always better if the library administration and IT
are on board! But coders are by definition inclined to
make (and break) things; they tend to find places to
exercise their skills or grow deeply frustrated if they
can’t. One respondent was irked that his code, which
made it easier for website users to access digital con-
tent, had limited impact because of inadequate sup-
port for digitization. He “learned that the impact of
code can be limited by administrative lack of resolve,
understanding, and focus.” And at least eight of the
fifty-three survey respondents have changed jobs
between answering the survey in spring 2014 and this
writing in November 2014. While their reasons vary,
this does point to how hard it is to keep coders satis-
fied if they don’t have scope for building things.

Finally, several respondents raised the issue of
mission-criticality, but without agreement. Some said
that coding mission-critical projects is a good way to
achieve buy-in and sustain motivation; others noted
that working on key projects is a good way to justify
professional development support. However, as Becky
Yoose says, “Do not start coding on a project that’s
mission-critical because that is a good way to fail.” She
and others recommended building small pilot projects
to demonstrate value and build skills before tackling
critical services.

Institutional Barriers

Many librarians were missing some important kind
of institutional support for learning and writing code.
These missing pieces fell into three broad categories:

• lack of support for learning
• lack of support for doing the work
• lack of collaboration

One librarian who hadn’t received support for
learning to code said, “Coding is really useful, but
you’re just supposed to know it.” Many respondents
reported learning to code on their own time, outside
of work. Some librarians had difficulty convincing
employers to let them spend professional development
funds on code learning; indeed, one manager could not
secure support for a supervisee because the higher-ups
“didn’t want her to learn because that would mean that
they would have to bump her up a classification level.”
Other librarians simply didn’t have enough profes-
sional development funds to cover high-impact learn-
ing opportunities like formal classes or conferences.
In many cases, the best form of support described was
benign neglect—managers who didn’t know what
these librarians were doing but wouldn’t stop them
from coding as long as things got done somehow.

Other librarians who already have the skills to
code described environments that were hostile to
doing that sort of work. Lack of access to servers or
permission to install software is a recurrent problem;
one librarian says, “I mean, seriously, there is one sec-
tion where I parse XML with regular expressions. But
at the time I didn’t have access to install libxml on
the system!” Another librarian, whose resume is code-
heavy and who was hired in a systems role, found that
his managers expected him to use only proprietary
software, even when open source options (which he
had the expertise to implement) would have been bet-
ter or cheaper. They also expected him to call vendor
support rather than figuring out problems on his own.
In one extreme case, a librarian who spends well over
half his time on coding and related tasks is at an insti-
tution where most units (including his) are explicitly
banned from touching code. His middle management
recognizes how valuable his work is and finds ways to
protect the time while keeping upper management in
the dark.

Unsurprisingly, isolation is a major issue for many
coding librarians. They may be the only ones in their
department, or even their library, who know how to
code. Organizational and cultural barriers may pre-
vent them from collaborating with IT or with librar-
ians in other institutions. This is particularly unfortu-
nate because, contrary to popular stereotypes, coding
is a profoundly social occupation. Most programs of
any size are written by teams; most learning takes
place through shoulder-surfing, code review, and
other forms of pair programming or mentorship. This
is especially true for advanced programming skills,
like making good decisions about the overall organi-
zation of programs, and for everyday craft knowledge,
like discovering good editing and debugging tools.

One librarian wrote, “We had a systems librarian
who was very much the fabled hardcore geek of yore,
who had basically single-handedly programmed much
of the infrastructure we depended on (e.g., ERMS, web-
site CMS, etc.) but was known to only work on a prob-
lem if he believed it to be important (not many external
suggestions—even from the [University Librarian]—
passed this test).” There are good reasons for people
to be territorial about code—it’s important to have
high standards of quality and maintainability for

“The institution, however, only gives me $500 in pro-
fessional development funds per year so although
the resources are here to learn whatever I want, any
structured learning I want to do comes out of pocket.
As it is, the institution is not paying for me to speak
at conferences related to my job directly unless they
are planned for 12+ months in advance, and I do not
have the time to play institutional Calvin Ball with a
budget office that doesn’t know how libraries work.”

25

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

mission-critical applications—but at this extreme, the
whole institution is held hostage because only one per-
son understands the code. The respondent taught him-
self enough code to solve some problems that the sys-
tems librarian wasn’t interested in fixing, but this was
an enormous lost opportunity for knowledge transfer.
Furthermore, since he is self-taught, he recognizes that
he doesn’t “have any of the best practices that make
code sharing easier.” This, in turn, will make it harder
to collaborate with any future coding coworkers.

Of course, many librarians who code do not have
even one coworker they can talk to about code. In
their case, the ability to share code and participate in
open-source projects is critical for skills development.
Many libraries, however, do not have formal policies
on whether code can be shared and may not have an
informal consensus; some are actively hostile to open
source. Dale Askey outlined diverse reasons for this
hostility, including perfectionism, fear of ongoing sup-
port responsibilities, and misunderstanding of open
source.3 The upshot, however, is untold wasted hours
of duplicated work and limits on librarians’ ability to
increase their own skills.

Bohyun Kim (who ran into this challenge herself)
recommends thinking about open source and intel-
lectual property from the very start. Coders are often
in fairly junior roles and may not have the ability to
negotiate with their institutions; however, it’s good
to identify what approvals you would need to release
your code and who owns it. If you can identify, or cre-
ate, a release procedure, your code will be more useful
and personally rewarding.

Notes
1. Anna Bjartmarsdottir et al., “Plan for the Web Pres-

ence,” UAA/APU Consortium Library, November 10,
2013, http://connect.ala.org/node/213992.

2. Coral Sheldon-Hess, “Getting Buy-in on User Centrici-
ty,” presentation. LITA Forum, Louisville, KY, Novem-
ber 7–10, 2013, www.slideshare.net/csheldonhess/
lita-forum.

3. Dale Askey, “Column: We Love Open Source Soft-
ware. No, You Can’t Have Our Code,” Code4Lib Jour-
nal, no. 5 (December 15, 2008), http://journal.code
4lib.org/articles/527.

26

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

Whenever I speak on library code issues, one of
the first questions I get is, “How can I learn
to code?” If that was your question, this

chapter is for you. I’ll discuss respondents’ recommen-
dations for learning strategies and resources. I’ll also
cover the various forms of workplace support librari-
ans have received in learning to code so that you know
what to ask of your manager, or what to provide if you
are a manager.

Learning Strategies and Resources
That Coders Recommend

I asked survey respondents what they would recom-
mend to people who’d like to learn to code. The recur-
ring themes were these:

• find a project
• rely on Google and existing code
• write documentation
• persevere
• find a mentor

Of these, finding a project is the most important. It
doesn’t matter if it’s for work or for fun, though it will
be easier to get professional development support for
work projects; it just has to be important to you. Hav-
ing a goal you’re committed to will help you persevere
through the inevitable challenges (see below). It will
give you a sense of accomplishment when you make
progress; it may even have real-world impact, which
is tremendously motivational for many coders. It can
also provide natural answers to questions like “What
programming language should I learn?” and “What do
I need to learn next?”

What sort of project? You may already have one
in mind, in which case, start there! If not, automate
a repetitive task, simplify a bothersome workflow,
or improve some element of user experience. Or, of
course, take on one of the projects in this report! Most
of them can be accomplished in under a hundred lines
of code; you’ll need a solid grasp of programming fun-
damentals, but you don’t need a deep grounding in
computer science or years of experience. Write one
from scratch, rewrite one in your preferred language,
or modify one to work better for you; the scripts in
this report are intended to be a springboard for you.
Whatever you choose, make it as small as possible (or
break it down into small parts) so it doesn’t get too
overwhelming, and feel free to incorporate working
code snippets you find online. The sooner you can get
something interesting working, the sooner you’ll feel
rewarded and capable.

This brings us to the second piece of advice, rely
on Google and existing code. Modifying existing code is
not cheating! There’s a good chance someone else has
already written code to do most of what you want; the
ability to read and edit others’ code can get you a long
way, even if you never write your own programs from
scratch. Even experienced programmers regularly
look up syntax details and copy and paste code snip-
pets from around the web. Googling for something like
“[programming language] [problem keyword] exam-
ple” will often turn up helpful code samples and Stack-
Overflow advice. Spending some quality time brows-
ing library coders’ GitHub repositories can yield lots
of useful code and inspiration, too. The Code4Lib wiki
page “Libraries Sharing Code” is a good starting place.
Many of the people cited in this report have GitHub
repositories as well.

Learning to Code

Chapter 6

27

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

intense ways code learning can push us into impos-
tor syndrome, can make us feel we don’t belong (par-
ticularly if we’re not a 19-year-old white male in a
hoodie), can make us feel frustrated and anxious and
overwhelmed. You probably will feel that way if you
learn to code, and that’s okay. One of the biggest
things, in fact, that learning to code will give you is a
toolbox for handling those feelings and the knowledge
that you can do the work even if you’re intimidated.

This, however, is a big reason that it’s good to find
a mentor. Mentors are great for answering technical
questions and for telling you about tools and best prac-
tices that may not be written in books. But they’re also
great for holding your hand, cheering you up, and bol-
stering your self-confidence.

Where do you find one? If you have a friendly,
technically skilled colleague at work or a nearby insti-
tution, that’s ideal. Some institutions (e.g., the George
Washington University and the University of Mary-
land) have even started regular code-learning groups
for their librarians. If you can’t find a nearby colleague,
the numerous technology-focused library conferences
are great places to meet people. Nonlibrary technol-
ogy can also be a good place to look. Many technical
groups organize on Meetup.com; look for nearby meet-
ups focused on your technology of choice. Be aware,
though, that not all are beginner-friendly, and some
can be downright hostile to women or people of color;
look for groups that have outreach events, codes of
conduct, or other clear commitments to hospitality.
There are also technical groups focusing on outreach
to specific populations that may be relevant to you,
like PyLadies, PyStar, RailsBridge, and Trans*H4CK.
All of these groups (plus ones focused on outreach to
children, like Black Girls Code) are constantly looking
for meeting space; if your library can offer some, that’s
a great way to build bridges to your local technical
community, too.

StackOverflow
http://stackoverflow.com

Libraries Sharing Code
http://wiki.code4lib.org/Libraries_Sharing_Code

Not familiar with GitHub? You don’t need an
account to browse and download code. However, it’s
more useful once you have an account so that you can
fork repositories (i.e., make your own copy to edit) and
master a few basic commands. The LITA Library Code
Year Interest Group has a hands-on tutorial available.

Learn GitHub tutorial
https://github.com/LibraryCodeYearIG/Codeyear-IG-
Github-Project

Google, StackOverflow, and (to a lesser extent)
GitHub work as learning tools because people have
invested time in documentation. Pay it forward! Writ-
ing up your own learning process can be helpful to
those who come after you—notably including yourself
in six months, when you’ve forgotten everything you
were thinking today. Organizing your thoughts well
enough to write them is a good self-teaching tool.
Additionally, many open-source projects want help
with documentation as well as code, and this can be an
easier route than code to begin contributing. Read the
project guidelines, look for a bug tracker with open
documentation bugs, and make things better while
your memory is fresh. Finally, writing documentation
increases the chances that others will build on your
work; seeing others succeed because of your work can
be motivational and rewarding.

Step four: persevere. Learning to code is hard! You
must devote a lot of time to it. Also, you’ll make mis-
takes, and some of them will be hard to debug. Begin-
ners often think this means they don’t have the apti-
tude, but they’re wrong; coders at all levels constantly
run into challenging bugs. As Kate Roy says, “There is
no mastery, there is no final level. The anxiety of feel-
ing lost and stupid is not something you learn to con-
quer, but something you learn to live with.”1 Or, as
Cecily Carver notes, in an outstanding Medium article
on what she wishes she’d known as a new coder, “I’ve
found that a big difference between new coders and
experienced coders is faith: faith that things are going
wrong for a logical and discoverable reason, faith that
problems are fixable, faith that there is a way to
accomplish the goal.”2

People don’t talk enough about emotion in learn-
ing to code. They talk about languages and tools and
MOOCs and books, but not about feelings: about the

“Very recently, a cataloging support staff member
presented me with a printout of one of my old OCLC
Macro Language cataloging scripts. The script pro-
duced a template MARC record for a title from a spe-
cific e-book collection, and she had edited it, largely
correctly, to make the record it produced comply with
new Resource Description and Access cataloging
practice. She had ‘discovered’ programming by way
of one of my scripts—this was very thrilling to me!”
—Carrie Preston

“You have to keep persisting. This is very different
from writing a LibGuide or a handout.”
—Bohyun Kim

28

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

librarians, I’m skeptical of unstructured and unsup-
ported learning experiences. Because there’s so little
formal pipeline for teaching librarians to code, those
librarians who do are, almost definitionally, the ones
who do well with self-teaching, and their recommenda-
tions demonstrate a certain survivorship bias. I believe
many librarians who aren’t already coding, but want to,
are more likely to succeed with a more structured,
social experience. I’ve also been more generally
impressed with the curricula in O’Reilly books than in
free online courses; whatever your language of choice
is, O’Reilly almost certainly publishes an introduction.

Other specific resources recommended by respon-
dents include:

• The Art of UNIX Programming, by Eric S. Raymond,
https://openlibrary.org/works/OL6036022W/
The_art_of_UNIX_programming. Many librarians
find that command-line tools are even more useful
than programming languages.

• _why’s (Poignant) Guide to Ruby, a sui generis, part-
cartoon introduction available free online, http://
mislav.uniqpath.com/poignant-guide/book.

• Python Programming in Context, by Bradley N. Miller
and David L. Ranum.

• The Pragmatic Studio, “Ruby Programming,”
online course, $132 with discounts and free trial
available, http://pragmaticstudio.com/ruby.

• Lynda.com courses, www.lynda.com. In my experi-
ence, these are somewhat advanced for beginners,
but excellent if you have a bit of prior experience, or
good mentors; many libraries have a subscription.

• Google’s Python Class, https://developers.google
.com/edu/python. This resource is also best suited
for people with some background; it is free, with
good practice exercises.

• Formal courses available at your institution or in
your area. These will probably be more theoreti-
cal than many librarians want and will likely not
address library use cases, but taking even one will
make it much easier to get mileage out of free
resources.

It’s also worth noting that several respondents
said you should not try learning to code—or, at least,

Meetup.com
www.meetup.com

PyLadies
www.pyladies.com

PyStar
http://pystar.org

RailsBridge
www.railsbridge.org

Trans*H4CK
www.transhack.org

Black Girls Code
www.blackgirlscode.com

Finally, while in-person mentors are generally
better, it’s okay if you don’t have access to them; the
mailing lists and IRC channels for Code4Lib, LITA-L,
LibTechWomen, and the like can expose you to cur-
rent thinking and give you a place to ask questions.
LibTechWomen has been running Code Club discus-
sion groups; it’s easy to set one up yourself by follow-
ing Saron Yitbarek’s advice.

Saron Yitbarek, “Reading Code Good”
http://bloggytoons.com/code-club

You may have noticed there’s one question many
beginners ask that I didn’t answer here; to wit: “What
language should I learn?” That’s because there’s no
one answer to this question. Survey respondents wrote
library code in fourteen different languages. The best
language for you to learn depends on your personal
taste, whether you have ready access to a community
of experts, and above all the project you want to write.
If you’re modifying existing code or participating in
an established open-source project, the choice of lan-
guage is already made. If you’re starting from scratch,
your choice of project still influences your choice of
language; for instance, web development probably
means JavaScript, and MARC processing wants a lan-
guage with an established MARC library, like ruby-
marc, Python’s pymarc, or PHP’s File_MARC. Look for
projects similar to the one that you want to do (includ-
ing the projects in this report) and use their language
choices as a guideline.

Finally, what tools should you use for learning?
Google and Codecademy came up frequently in survey
respondents’ recommendations. While they have value
(and Google is indispensable), as a teacher of code to

ruby-marc
https://github.com/ruby-marc/ruby-marc

Python’s pymarc
https://github.com/edsu/pymarc

PHP’s File_MARC
https://github.com/pear/File_MARC

29

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
A

p
ril 2015

Coding for Librarians: Learning by Example Andromeda Yelton

that you should do it only if you’re genuinely passion-
ate about it and not just to check off a line on your
resume. They indicated that people without this pas-
sion either would not succeed or would not become
very good coders (and they felt that the world does
not need more low-skilled coders). I agree in part
and disagree in part. Coding is challenging enough
that commitment is necessary; if you don’t have that
commitment, by all means spend your time on other
things—there’s no shortage of skills that will enrich
your life and work! And becoming a deft, insightful
coder is a full-time pursuit, and thus out of scope for
most librarians. On the other hand, as we’ve seen in
this report, you don’t need to write large-scale, pol-
ished, reusable software in order to get big bene-
fits from learning to code. Automating a task with a
few dozen lines of code can save you many hours in
a year. Even if you’re a barely adequate coder, you
can spend those extra hours being a fabulous original
cataloger or research consultant or department head,
employing human judgment and doing tasks the com-
puter can’t.

Workplace Support

Because learning to code can be time-consuming—and
because librarians’ code skills can be so beneficial to
their institutions—it is both helpful and relevant for
librarians to receive professional development sup-
port in learning to code. I asked respondents what, if
any, workplace support they had received; I also asked
managers what, if any, they had provided or would
provide.

Answers varied significantly. While managers
who code understand uniformly the value in support-
ing this skill, not everyone is lucky enough to have
such a manager. Among institutions that do support
code learning, funding and policy vary. Among sur-
vey respondents, the gold standard was set by Evviva
Weinraub Lajoie at Oregon State University Libraries
& Press. She provides employees with twenty hours

per month of learning time, at least one conference per
year, access to paid online tutorials, and even struc-
tured internships. Other libraries can’t offer this level
of support, but at least provide informal mentorships,
code review, and the like.

Unfortunately, some librarians have no support,
or even face active hostility. Some institutions simply
don’t have pertinent checkboxes on their paperwork,
and it’s hard to pertinent the relevance of these skills
to a faceless bureaucracy. Two managers were unable
to secure coding skills development for interested
supervisees because their institutions did not want to
reclassify them into higher salary categories reflecting
those skills. And, as we saw in chapter 5, one librar-
ian who spends a significant amount of time coding
is doing so without upper management’s knowledge;
in that institution, only people belonging to other,
explicitly technical, units are allowed to code. (Mid-
dle management “works pretty hard to keep me writ-
ing code as much as possible, even letting me out of
some regular meetings because they know I can con-
tribute more if I’m tickling a keyboard,” says this
librarian, who will remain anonymous for obvious,
though distressing, reasons.)

Tech-savvy managers uniformly recognize the
value of these skills and are willing to support them.
Not all of them have supervisees who are interested,
and the availability of funds varies, so the specific sup-
port provided does also. However, types of support
that managers provide include:

• time: finding ways for planned projects to include
learning new technologies, setting aside time for
learning and experimentation, defending this time
to upper management

• books
• software licenses
• root privileges, development sandboxes, testing

servers, quality hardware: in short, the ability to
install and experiment with software

• conference attendance: supported in time, money,
or both

• workshops: some paying for attendance, others
teaching them personally

• regular study groups, such as the one at the Uni-
versity of Maryland libraries or the George Wash-
ington University code reading group

• courses: online (such as Lynda.com, Code School,
RailsCasts, Treehouse) or face-to-face, through
tuition remission in the case of academic libraries

• code review
• mentorship
• formal internship programs
• making coding skills part of supervisees’ perfor-

mance goals, which helps justify other forms of
support

“For the, the big thing was *find the right introduc-
tion*. There are a lot of guides for learning to code
around, many of whom assume this or that reason
why you might want to program, or start with the
assumption that you have pre-existing knowledge of
how to program. I learned to program from _why’s
(Poignant) Guide to Ruby, and I think this sentence is
the very moment it clicked: ‘You will be writing stories
for a machine.’ Coding as creative act, as artwork.
Not algorithms or math or business rules. That caught
my attention, and that got me going.”
—Misty De Meo

30

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

A
p

ri
l 2

01
5

Coding for Librarians: Learning by Example Andromeda Yelton

University of Maryland Libraries Coding
Workshop
https://github.com/umd-coding-workshop/website/wiki

Lynda.com
www.lynda.com

Code School
https://www.codeschool.com

RailsCasts
http://railscasts.com

Treehouse
http://teamtreehouse.com

Conclusion

Throughout this report, you’ve seen how librarians use
short programs to make their work lives better in con-
crete ways, the opportunities (and obstacles) posed by
code, and strategies you can use to start learning or to
upgrade your skills.

Now it’s your turn! Pick a project, find a class, put
together a study group: whatever your next steps are,
get started.

Whatever you do, you can always find source
code for the projects discussed in this report, plus oth-
ers that didn’t fit—including the source code for the
Django app I wrote to keep track of my own survey
data—on the companion website. If you have a proj-
ect you’d like to share—particularly one you wrote as
a result of reading this report!—I’d love to feature it
there as well; instructions are on the site.

Companion website
https://thatandromeda.github.io/ltr

Notes
1. Kate Ray, “Don’t Believe Anyone Who Tells You

Learning to Code Is Easy,” TechCrunch, May 24,
2014, http://techcrunch.com/2014/05/24/dont-
believe-anyone-who-tells-you-learning-to-code-is-easy.

2. Cecily Carver, “Things I Wish Someone Had Told Me
When I Was Learning How to Code: And What I’ve
Learned from Teaching Others,” Medium, November
22, 2013, https://medium.com/@cecilycarver/things-
i-wish-someone-had-told-me-when-i-was-learning-
how-to-code-565fc9dcb329.

Notes

Keep up with

Subscribe
alatechsource.org/subscribe

Purchase single copies in the ALA Store
alastore.ala.org

alatechsource.org
ALA TechSource, a unit of the publishing department of the American Library Association

Library Technology
R E P O R T S

Upcoming Issues

May/June
51:4

Library Services Platforms
by Marshall Breeding

July
51:5

Altmetrics
by Robin Chin Roemer and Rachel Borchardt

August/
September

51:6

Open Access Journals
by Walt Crawford

